Дипломная работа

ПОИСК ФАЗОВЫХ ПЕРЕХОДОВ В РОЖДЕНИИ ЗАРЯЖЕННЫХ АДРОНОВ В СТОЛКНОВЕНИЯХ ЗОЛОТО-ЗОЛОТО НА РЕЛЯТИВИСТСКОМ КОЛЛАЙДЕРЕ ТЯЖЕЛЫХ ИОНОВ

> студента физического факультета МГУ им. М. В. Ломоносова Апарина Алексея Андреевича

> > научные руководители д.ф.-м.н., проф. Токарев М. В. к.ф.-м.н., с.н.с., Кечечян А.О.

Дубна, 2011

Содержание

≽ Введение

- Детектор STAR
- Монте-Карло модель UrQMD
- ▶ Результаты моделирования AuAu событий при энергии √s_{NN} =7.7 ГэВ
- Сравнение с экспериментальными данными
- > Оценка потерь энергии
- ≽ Выводы

Введение

Фазовая диаграмма ядерной материи

Цель работы:

Цель программ по физике тяжелых релятивистских ионов на RHIC, SPS:

- Исследование свойств высоковозбужденной ядерной материи и поиск фазовых переходов
- Энергетическое сканирование
 в диапазоне √s_{NN} =7.7-39 ГэВ
 для поиска критической точки

- моделирование AuAu столкновений при энергии Vs_{NN} =7.7 ГэВ для изучения характеристик рождающихся частиц (π, К, р,...) и античастиц при больших поперечных импульсах (4-5 ГэВ/с).

- оценки потерь энергии при больших поперечных импульсах

STAR, H. Caines et al., arXiv:0906.0305.
STAR, B. Abelev et al., Phys. Rev. C81 (2010) 024911.
NA61, M. Gazdzicki et al., J. Phys. G36 (2009) 064039.

Установка STAR

Большой аксептанс установки STAR |η|<2.5, 0<φ<2π позволяет с помощью TPC+TOF идентифицировать частицы π, К, р, е, Λ, Σ,... в диапазоне импульсов 0.2< p_т <2 (ГэВ/с)

STAR CollaborationK.H. Ackermann et al., Nucl. Instr. Meth. A499 (2003) 624.T. Zou et al., Nucl. Instr. Meth. A605 (2009) 282.W.J. Llope et al., Nucl. Instr. Meth. A522 (2004) 252.

Монте Карло модель UrQMD

Ultra-relativistic Quantum Molecular Dynamic (UrQMD) – микроскопическая модель, основанная на описании ядерных реакций в терминах фазового пространства. При энергии √s_{NN} > 5 ГэВ модель учитывает возбуждения цветовых струн, с последующей их фрагментацией в адроны. В семействе моделей QMD нуклон параметризуется

функцией
$$\varphi_i(\bar{x};\bar{q}_i,\bar{p}_i,t) = \left(\frac{2}{L\pi}\right)^{3/4} \exp\left\{-\frac{2}{L}(\bar{x}-\bar{q}(t))^2 + \frac{1}{\hbar}i\bar{p}_i(t)\bar{x}\right\}$$
определяемой шестью время-зависимыми переменными. Волновая функция ядра является произведением волновых функций нуклонов. Гамильтониан системы имеет вид $H_{UrQMD} = \sum_{j=1}^{N} E_j^{kin} + \frac{1}{2}\sum_{j=1}^{N}\sum_{k=1}^{N} (E_{jk}^{Sk2} + E_{jk}^{Yukawa} + E_{jk}^{Coulomb} + E_{jk}^{Pauli}) + \frac{1}{6}\sum_{j=1}^{N}\sum_{k=1}^{N}\sum_{l=1}^{N} E_{jkl}^{Sk3}$

Уравнения эволюции во времени решаются численно. Сталкивающиеся ядра рассматриваются как ферми-газ нуклонов. Полное сечение взаимодействия в модели зависит от изоспина и аромата сталкивающихся частиц и энергии в с. ц. м. При энергии √s_{NN} > 5 ГэВ для рр сечения используется CERN/HERA параметризация

$$\sigma(p) = A + Bp^n + C\ln^2(p) + D\ln(p)$$

The UrQMD Model, <u>http://urqmd.org/</u> S.A. Bass et al., Prog. Part. Nucl. Phys. 41 (1998) 225. M. Bleicher et al., J.Phys. G25 (1999) 1859.

Распределение AuAu событий по множественности заряженных частиц при энергии столкновения √s _{NN} = 7.7 ГэВ и |η|<0.5

- Набрано 10 млн. АuAu событий.
- Потребовалось ~6500 СРU часов работы на вычислительной ферме ЛИТ ОИЯИ.
- Обработка событий проводилась в среде ROOT.

Среднее число заряженных частиц в каждом классе центральности

Центральность %	0-5	5-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
<n<sub>ch></n<sub>	182	148	113	79	54	36	23	14	8

Зависимость плотности множественности 1/N dN/dη частиц от псевдобыстроты при энергии столкновения √s_{NN} = 7.7 ГэВ

 $\eta = -\ln(tg(\mathcal{G}/2))$

Высокая эффективность (~90%) регистрации частиц в интервале псевд быстрот |η| <0.5 на установке STAR

Спектры заряженных пионов

Результаты МС

Экспериментальные данные

МС спектры пионов

- достигают импульсов вплоть до р_т ≈ 4-5 ГэВ/с
- получены для 9 классов центральности
- убывают на 7-8 порядков

Распределения по поперечному импульсу для 9 классов центральности получены для K[±], p[±], h[±]

Экспе, тиментальные данные измерены до р_т ≈ 1.5 ГэВ/с

Оценка потерь энергии при рождении h⁻ адронов в AuAu столкновениях при √s_{NN} = 7.7 ГэВ

Потери энергии $\Delta E/E \sim (1-y_a)$

ΔЕ – потеря энергии, Е – полная энергия конституента,
 у_a – доля импульса конституента, уносимая инклюзивной частицей

Потери энергии увеличиваются с энергией и центральностью столкновения и уменьшаются с ростом поперечного импульса p_T.
 Поиск критической точки предпочтителен в области больших p_T.
 Поиск ярких сигнатур фазовых переходов в текущих - STAR(RHIC, BNL), NA61(SPS, CERN) и планируемых - MPD (NICA, JINR), CBM (SIS, GSI), ALICE (LHC, CCPN) экспериментах.

Выводы

- Проведено моделирование AuAu столкновений при энергии Vs_{NN} = 7.7 ГэВ. Статистика 10 млн. событий позволила провести анализ спектров частиц до импульсов р_т = 5 ГэВ/с.
- Получены распределения AuAu событий по множественности заряженных адронов.
- Получены зависимости спектров идентифицированных адронов по псевдобыстроте (|η|<3).</p>
- Получены зависимости спектров заряженных пионов, каонов, протонов и их античастиц для 9 классов центральности от поперечного импульса (до р_т = 4-5 ГэВ/с).
- Проведено сравнение МС результатов с экспериментальными данными STAR.
- ▶ В рамках теории z-скейлинга получены оценки потерь энергии конституентов в зависимости от поперечного импульса инклюзивной частицы, рожденной в AuAu столкновении при энергии √s_{NN} = 7.7 ГэВ.

Дополнительные слайды

Кинематика элементарного подпроцесса

$$z = z_0 \Omega^{-1}$$
$$z_0 = \frac{s_{\perp}^{1/2}}{(dN_{ch}/d\eta|_0)^c m_N}$$

$$\Omega = (1 - x_1)^{\delta_1} (1 - x_2)^{\delta_2} (1 - y_a)^{\varepsilon_a} (1 - y_b)^{\varepsilon_b}$$

M.Tokarev. & I.Zborovsky PRD75,094008(2007) IJMPA24,1417(2009)

Закон сохранения импульса

 $(x_1P_1 + x_2P_2 - p/y_a)^2 = M_X^2$ $M_X = x_1M_1 + x_2M_2 + m_2/y_b$

Принцип минимального разрешения Ω⁻¹ фрактальной меры z :

- > $x_1, x_2 \rightarrow$ энергия подпроцесса
- у_a → энергия потерь (диссипация) при рождении инклюзивной частицы
 M_X= x₁M₁+x₂M₂+m₂/y_b → нерегист-

рируемая масса

 $y_b \rightarrow$ множественность M_X

Фрактальные размерности δ, ε и "удельная теплоемкость" с – параметры модеян, описывающие структуру ядер, процесс фрагментации и ядерную среду Параметры чу. ствительны к энергии и центральности столкновения при больших р_т.