Дипломная работа

Роман Медведев, 2012

Феноменология каонов

πππ

СР-нарушение в стандартной модели

Запишем слагаемое лагранжиана стандартной модели, которое описывает слабые заряженные токи для кваркового сектора:

СКМ матрица

В этой параметризации η – CP-нарушающий параметр и – CP-инвариант порядка , а CP-нарушение впервые проявляется в порядке .

распад в Стандартной модели

Предсказание Стандартной модели:

Диаграммы Фейнмана для распада

В этой реакции параметр можно вычислить с очень высокой точностью, так как:

1) Адронный матричный элемент непосредственно извлекается из экспериментальных данных по измерению относительной вероятности распада .

2) Вклад непрямого СР-нарушения в этот процесс очень мал (порядка 10-4).

Эксперимент Е14

Цель: Измерение вероятности распада на уровне предсказаний стандартной модели (), используя детектор КЕК-ЕЗ91

<u>Метод:</u> Сигнатура распада – два фотона, образовавшиеся при распаде пиона:

Метод детектирования искомого распада

1) Проверяется энерговыделение в вето-детекторах.

 Реконструируется число электромагнитных ливней в калориметре.

Если распознано два кластера, то:

3) Восстанавливается энергия и координата попадания ү-квантов в калориметр.

4) В предположении, что ү-кванты образовались в результате распада частицы с массой -мезона, и точка распада лежит на оси пучка, восстанавливается z-координата точки распада.

5) Восстанавливается поперечный импульс -мезона.

6) К восстановленному событию прикладываются другие способы подавления фонов.

Основной фон

- Распады каонов:
 - (обмен заряда)
 - (потеря двух заряженных пионов)
 - (потеря двух ү-квантов)
- Гало нейтронов:
 - Взаимодействие с материалом детектора
 - Продуцирование и мезонов
- ү-кванты попавшие в регион детектора извне.

Моделирование

Канал пучка ускорителя PS в CERN

Моделирование пучка на выходе мишени

• Как

Моделирование прохождения вторичного пучка через канал

Плотность пространственного распределения пучка по осям *x* и *y*

Плотности пространственных распределений нейтронов и *у*-квантов

Распределение пучка

по полному импульсу

Распределение нейтронов и ү-квантов по импульсу

Пространственное распределение гамма квантов по координатам *x* и *y*

Заключение

- Определён оптимальный угол экстракции для пучка нейтральных каонов при заданной конфигурации первичного пучка – 35 мрад.
- Получившийся пучок достаточно узкий (R~5см), чтобы удовлетворять условиям налагаемым экспериментом.
- Получены пространственные и импульсные распределения нейтронов и гамма квантов, на входе детектора.
- Распределение по полному импульсу пучка каонов, прошедших через коллиматоры, было аппроксимировано асимметричной Гауссовой функцией.

Спасибо за внимание