Дипломная работа моделирование космического детектора тус «Трековая установка»

Выполнила студентка 6 курса кафедры физики элементарных частиц МГУ им. М. В. Ломоносова Бакина О. В. Научный руководитель: старший научный сотрудник Ткачёв Л. Г. Космические лучи предельно высоких энергий (КЛПВЭ/UHECR), Реликтовое микроволновое излучение (РМИ/СМВ) и Эффект Г.Т.Зацепина, В.А.Кузьмина, К.Грейзена (ГЗК-обрезание)

Рождение $\Delta(1232)$ -изобары в γ р-реакции при энергии протона >4*10¹⁹ эВ и энергии реликтовых фотонов \approx 10⁻⁴ эВ приводит к быстрой потере энергии протоном при распространении в межзвёздной среде (средний свободный пробег \approx 50 Мрс). Но

- число источников в пределах 100 Мрс лимитировано;
- величины межгалактических магнитных полей недостаточно, чтобы сильно искривить траекторию КЛПВЭ протона;
- набранная в течение многолетних наблюдений статистика не превышает сотни событий, причем данные разных экспериментов неудовлетворительно согласуются между собой.

Результаты измерения спектра КЛ, полученные на сегодняшний день на многих наземных и космических установках в течение многолетних исследований.

Нерешённые проблемы исследования КЛПВЭ современными наземными установками Auger (Аргентина) и Telescop Array (ТА, США)

- Массовый состав спектра: из данных Auger следует утяжеление спектра с ростом энергии вплоть до ядер железа, в то время как данные ТА соответствуют протонному составу;
- Auger видят анизотропию и даже обсуждают возможную корреляцию с АГН – активными ядрами галактик, в данных ТА такой анизотропии и корреляции не видят;
- Статистика в области 10²⁰ эВ и выше ещё очень мала;
- Систематические погрешности при измерении энергии первичной частицы велики (более 20% экспериментах Auger и TA).

Общий вид и параметры детектора ТУС

- составное зеркало-концентратор (СЗК) Френеля площадью ~1.8 м²
- электронный блок фотоприемника (ЭБФ) в фокусе СЗК - 16х16 матрица ФЭУ диаметром ~13 мм и чувствительных к излучению ШАЛ в области 300-400 нм;
 - поле зрения оптической системы $FoV = \pm 4.5^{\circ}$ соответствует обзору участка атмосферы площадью ~80x80 км²;
- основной регистрируемый сигнал от ШАЛ: изотропный поток флуоресцентных фотонов, а также отраженный от поверхности Земли или облаков черенковский свет.

БЛОК ФОТОПРИЁМНИКА ДЕТЕКТОРА ТУС

1 – световод, 2 – ФЭУ, 3 – кластер фотоэлектронных умножителей на печатной плате, 4 – печатная плата кластера с электроникой, 5 – материнская плата блока фотоприёмника с электроникой управления, 6 – блок фотоприёмника, 7 – коллиматор

МОДЕЛИРОВАНИЕ РАБОТЫ ЭЛЕКТРОНИКИ ФОТОДЕТЕКТОРА ТУС

Пример «идеального» (без фоновых фотонов) ШАЛ с энергией E=1.06*10²⁰eV, углами падения θ=78° и φ=304°, полученного по программе ESAF для последующего моделирования его регистрации фотодетектором ТУС.

(Вверху – суммарное распределение фотонов на фотокатодах ЭБФ, внизу – распределение по каналам с квантовой эффективностью ФЭУ равной 0.21)

Распределения фоновых и ШАЛ фотонов на последовательных кадрах по 16 тактов для предыдущего события на плоскости фотодетектора для минимального фонового потока ~ 50000 фот/кадр

(Вид распределений не зависит от того, одинаковые или нет коэффициенты усиления имеют ФЭУ => даже для идеального случая выделение полезного сигнала является непростой задачей.)

Пример зависимостей анодного тока для 16 кластеров ЭБФ в выделенных 9-х пикселях каждого кластера от времени в течение прохождения фотонов ШАЛ через аппаратуру ТУС

Зависимость скользящих сумм в 9-м пикселе каждого кластера от времени при минимальном фоне

Изменение временной зависимости скользящих сумм с увеличение фонового потока в 2 раза

(Растет как среднее значение скользящих сумм, так и их флуктуации во времени.)

Задание порога для скользящих сумм

- Из распределений по скользящим суммам для каждого кластера при фиксированном фоне:
- $\langle SS_i \rangle = \langle SS_r \rangle = 17.8 \pm 0.5$, RMS_{SSi} = 3.8 ± 0.5 , RMS_{SSr} = 4.8 ± 0.5 (при I_{min})
- $\langle SS_i \rangle = \langle SS_r \rangle = 44.0 \pm 1.5$, $RMS_{SSi} = 6.1 \pm 0.5$, $RMS_{SSr} = 8.5 \pm 1.5$ (при $2I_{min}$)
- Порог для скользящих сумм каждого кластера:
- $Th = \langle SS \rangle + n^*RMS,$
- где n целое число, n = 3, 4, ..., одинаковое для всех кластеров, которое подбирается вручную, чтобы обеспечить требуемый счет триггеров

Распределения средних значений скользящих сумм в каждом из кластеров за время прохождения через ЭБФ события ШАЛ при фоне I_{min} и 2I_{min}

Отбор событий при изменении порога триггера: синие точки – W-вероятность получения триггера, красные точки – η –доля истинных триггеров, фон 3I_{min}, зенитные углы ШАЛ θ = 10° - 80°, по оси х – энергия ШАЛ.

Ожидаемые энергетические спектры 5-летней экспозиции ТУС

Результаты работы

- Выполнено предварительное моделирование работы электроники при регистрации сигнала ШАЛ с учётом измеренных ранее оптических характеристик зеркала и параметров ФЭУ;
- Разработана двухуровневая триггерная система для увеличения эффективности работы детектора в полёте;
- Разработано специальное программное обеспечение на языке C++ с использованием пакета ROOT для предварительного моделирования и последующей обработки экспериментальных данных.

Спасибо за внимание