#### МГУ имени М.В. Ломоносова Физический факультет

кафедра физики элементарных частиц

## ИЗМЕРЕНИЕ ОТКЛИКА ЖИДКИХ СЦИНТИЛЛЯТОРОВ В ОБЛАСТИ БОЛЬШИХ ЭНЕРГИЙ ИОНИЗАЦИИ



**Выполнил** студент 209м группы Петрушин Александр Олегович

**Научные руководители** Кандидат физ.-мат. наук Леонтьев Владимир Викторович

Аспирант кафедры ФЭЧ Антошкин Александр Игоревич

Дубна 2018г.

### Нейтринный эксперимент NOvA



#### «Ароматный» состав пучка нейтрино, используемого в эксперименте NOvA



#### Схема ближнего и дальнего детектора эксперимента NOvA



### Основные свойства сцинтиллятора

Световой выход

*n* – среднее число фотонов,

рожденных в сцинтилляторе

- h
  u средняя энергия фотонов
- Е энергия, оставленная проходящей частицей

Время затухания Т

Радиационная длина  $x_0$ 

$$I = I_0 e^{\frac{-t}{\tau}}$$

 $\chi = \frac{nh\nu}{E}$ 

$$I = I_0 e^{\frac{-x}{x_0}}$$

I – амплитуда светового импульса
 t – время затухания люминесценции
 сцинтиллятора
 x – пройденный слой вещества

### Основные свойства сцинтиллятора

- Спектральный состав излучения
- Энергетическое разрешение
- Радиационная стойкость

 Квенчинг-фактор - отношение светового выхода частиц определенного типа к световому выходу для электронов



• Уменьшение световыхода (Формула Биркса)



 $rac{dE}{dx}$  – энергетические потери на единице пути A – константа kB – фактор Биркса

#### Задачи исследования

- Разработка методики измерения квенчинг-фактора
- Проектирование и постройка измерительного стенда
- Измерение квенчинг-фактора α-источников, построение кривой Биркса
- Оценка применимости методики к измерению квенчинг-фактора протонов и других адронов



Треки частиц после взаимодействия с антинейтрино в детекторе NOvA

### Испытательный стенд для измерений свойств сцинтиллятора NOvA



Общий вид стенда

### Испытательный стенд для измерений свойств сцинтиллятора NOvA



Внутреннее устройство стенда



### Испытательный стенд для измерений свойств сцинтиллятора NOvA



Электроника, используемая в эксперименте

#### Источники излучения



| Источник            | <sup>207</sup> Bi   | <sup>148</sup> Gd  | <sup>244</sup> Cm |
|---------------------|---------------------|--------------------|-------------------|
| Тип радиоактивности | β - радиоактивность | α- радиоактивность |                   |
| Энергия, [МэВ]      | 0,993               | 3,183              | 5,795             |



### Калибровка

<sup>207</sup>Bi - с поглотителем
 Спектр состоит только из ү-лучей

 <sup>207</sup>Ві - без поглотителя.
 Суммарный спектр состоит из ү-лучей и электронов

 Разница двух спектров – вклад электронов в спектр <sup>207</sup>Ві

### Проверка рабочего режима ФЭУ



Сигнал от светодиода

 $Q = 1,36 \, pC$ 

Калибровочный коэффициент

$$k = \frac{Q}{\mu} = \frac{1,36 \ pC}{0,76 \ \phi. \ 9.} = 1,79 \frac{pC}{\phi. \ 9.}$$

#### Измерение квенчинг-фактора а-частиц



Spectrum <sup>148</sup>Gd + <sup>244</sup>Cm

| Источник          | Теоретическая<br>энергия, [кэВ] | Экспериментальная<br>энергия, [кэВ] | Фактор гашения |
|-------------------|---------------------------------|-------------------------------------|----------------|
| <sup>148</sup> Gd | 3182.69                         | 125,1                               | 25,4           |
| <sup>244</sup> Cm | 5795.04                         | 447,5                               | 12,9           |

#### Кривая Биркса для а-частиц



### Заключение

- Разработана методика измерения квенчинг-фактора
- Спроектирован и построен измерительный стенд
- Проведена калибровка стенда, измерен квенчинг-фактор α-частиц
- На примере α-частиц проведена проверка применимости методики, чтобы впоследствии распространить ее для исследования других частиц



 Сейчас в распоряжении лаборатории имеется функциональный стенд для проведения дальнейших исследований сцинтиллятора

# Спасибо за внимание!

