ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

БАКАЛАВРСКАЯ РАБОТА

«МОДЕЛИРОВАНИЕ ПОТОКОВ АТМОСФЕРНЫХ НЕЙТРИНО В ЭКСПЕРИМЕНТЕ BAIKAL-GVD»

Выполнил студент 409 группы Завьялов Сергей Игоревич

подпись студента

Научный руководитель: доктор физ.-мат. наук, профессор Наумов Дмитрий Вадимович

подпись научного руководителя

Научный консультант: инженер ЛЯП ОИЯИ Аллахвердян Владимир Артурович

подпись научного консультанта

Допущена к защите _____

Зав. кафедрой академик РАН Матвеев В.А.

подпись зав. кафедрой

MOCKBA

Оглавление

ВВЕДЕНИЕ		3
1. Историческая справка		5
2. Эксперимент BAIKAL-GVD		7
3. Атмосферные нейтрино		10
3.1. Первичное космическое излучение		10
3.2. Широкий атмосферный ливень		11
3.3. Источники атмосферных нейтрино		12
3.4. Взаимодействие нейтрино с веществом		13
3.4.1. Беспороговые процессы		13
3.4.2. Низкоэнергетические ядерные процессы		14
3.4.3. Переходная область		15
3.4.4. Глубоко неупругое рассеяние		17
4. Теоретический подход		19
4.1. Формализм глубоко неупругого рассеяния		19
4.2. Решение уравнения переноса для атмосферных нейтрино.		20
4.3. Уравнение переноса в случае зависимости от телесного угла	ì.	24
5. Моделирование потоков атмосферных нейтрино		28
5.1. Поток нейтрино, усреднённый по телесным углам		28
5.2. Поток нейтрино в зависимости от телесного угла		30
ВЫВОДЫ		34
ЗАКЛЮЧЕНИЕ		35
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ		37

ВВЕДЕНИЕ

Актуальность работы

Ha сегодняшний существует день множество направлений применения нейтринной физики. Нейтринная астрономия занимает в этом списке видное место. Нейтрино представляет собой нейтральную слабовзаимодействующую сверхлёгкую частицу. позволяет ЧТО ей макрокосмические расстояния без преодолевать взаимодействия И изменения траектории. Благодаря этой особенности нейтрино являются прекрасным источником информации о процессах, происходящих в отдалённых концах Вселенной. Так, в 1987 году астрономы наблюдали редкое явление - взрыв сверхновой SN1987a. Но впервые от взрыва сверхновой были зарегистрированы не только долетевшие фотоны, но и поток высокоэнергетических нейтрино, который дошёл до Земли на три часа раньше света. Эта особенность связана с механизмом появления нейтринного излучения при взрыве сверхновой, так как, по некоторым моделям, нейтрино должны испуститься до взрыва в силу их слабого следовательно, беспрепятственного взаимодействия с веществом и, проникновения сквозь толщу звезды. При этом нейтрино уносят долю энергии сверхновой, тем самым охлаждая её и провоцируя гравитационный коллапс. Этот механизм стал предпосылкой к развитию так называемой многоканальной астрономии, в основе которой лежит идея о регистрации первоначального сигнала о произошедшем событии в виде потока высокоэнергетических нейтрино. Таким образом, задачей нейтринных телескопов является определение энергии и направления прилёта нейтрино, что даёт возможность другим телескопам, работающим с

другими типами частиц и в различных энергетических диапазонах, навестись на интересующую область космического пространства.

Исходя ИЗ этого, становится важной задачей определение энергетического спектра прилетающих нейтрино и их направления прилёта. Важной проблемой в вычислении этих характеристик являются ложные события – или иначе "шум" – создаваемые атмосферными нейтрино. Их поток оценивается как 10^6 см² · c⁻¹, а спектр простирается в широкой области энергий от 100 МэВ и выше. Многие нейтрино, рождённые в астрофизических процессах, имеют энергии, лежащие в этом диапазоне. Поэтому актуальной задачей представляется расчёт энергетического спектра этого "шума", который вычитается из полученных данных для отбора астрофизических событий. В то же время исследование атмосферных нейтрино само по себе является важной задачей, что может быть представлено как второстепенный результат данного исследования.

Цели и методы работы

Принимая во внимание всё вышесказанное, основной целью работы является моделирование энергетического спектра мюонных нейтрино, как наиболее распространённых в потоке атмосферных нейтрино, рождающихся при взаимодействии космических лучей с атмосферой Земли. Для решения этой задачи было составлено уравнение переноса для нейтрино в среде для случая усреднённого по углам прилёта начального спектра атмосферных нейтрино, а также в случае зависимости потока от телесного угла прилёта. Для его решения был использован метод " \mathcal{Z} – фактора". Для численного интегрирования получившегося уравнения на " \mathcal{Z} – фактор" был написан класс в рамках пакета NuProp коллаборации BAIKAL-GVD. Предложенный метод моделирования является достаточно универсальным, поэтому может быть использован для нужд других коллабораций, занимающихся исследованием атмосферных нейтрино либо косвенно их учитывающие, как в случае с нейтриными телескопами.

1. Историческая справка

Первым этапом на пути истории открытия нейтрино можно назвать теоретическое описание явления β -распада, которое было дано Энрико Ферми в 1934 году. Благодаря этой теории было объяснено появление электронов при радиоактивном распаде ядер. Однако возникла новая проблема, экспериментальные данные никак не согласовывались с предсказаниями теории, в частности, суммарная энергия электрона и образовавшегося в результате распада ядра меньше энергии начального ядра. Электроны, образующиеся в результате β распада, имели непрерывный энергетический спектр, тогда как если бы образовывалось две частицы, спектр должен был быть дискретным. Нильс Бор по этому поводу даже выдвинул теорию, что в случае отдельных актов β -распада возможно нарушение закона сохранения энергии, а сохраняться он будет только после усреднения по большому числу распадов. Чтобы исправить сложившуюся ситуацию, ещё в 1930 году Вольфгангом Паули было предложено ввести третью невидимую для детекторов сверхлёгкую частицу с нулевым зарядом и спином 1/2, рождающуюся в процессе β -распада, что для того времени было немыслимым делом. Но, как показывает история, его гипотеза оправдала себя в полной мере. Эта частица была названа "нейтрино", что с итальянского переводится как "маленький нейтрон", по аналогии с тяжелой нейтральной частицей – нейтроном. Важной особенностью нейтрино является его слабое взаимодействие с веществом. Сечение взаимодействия нейтрино в зависимости от энергии лежит в пределах от 10^{-10} барн до 10^{-19} барн. Но для того, чтобы проверить гипотезу В. Паули, необходимо было обнаружить эту частицу экспериментально. В 1930-х годах было проведено множество экспериментов, основанных на измерении эффекта отдачи ядра, которые косвенно доказывают

Рис. 1.1: Схема установки эксперимента Ф. Райнеса и К. Коэна. Верхний сцинтиллятор необходим для определения фона от космических лучей.

существование нейтрино, то есть они лишь доказывают выполнение законов сохранения при возможном существовании нейтрино. Однако прямое обнаружение нейтрино было осуществлено только в 1956 году учёными Фредериком Райнесом и Клайдом Коэном [1]. Чтобы создать достаточный поток нейтрино, их источником был выбран атомный реактор, который в результате β-распадов нейтронов излучал огромный поток электронных антинейтрино. В качестве протонной мишени использовались два бака по 200 л каждый, заполненные раствором хлористого кадмия в воде (CdCl₂+H₂O). Идентификация антинейтрино происходила с помощью метода запаздывающих совпадений, регистрируя аннигиляционные гаммакванты и образующиеся приблизительно через 10 мкс гамма-кванты из реакции радиационного захвата нейтронов ядрами кадмия (Рисунок 1.1). За эту выдающуюся работу в 1995 году Фредерик Райнес был удостоен Нобелевской премии "За экспериментальное обнаружение нейтрино".

2. Эксперимент BAIKAL-GVD

История зарождения нейтринного телескопа на озере Байкал берёт своё начало в 1980 году, когда в ИЯИ АН СССР была создана лаборатория нейтринной астрофизики высоких энергий. В 1981–1985 годах были проведены пробные установки гирлянд, и уже в 1993 году были опущены первые три гирлянды нейтринного телескопа HT-200, а закончен он был в 1998 году, достигнув рабочего объёма в 0.1 км³. Новый виток развития эксперимента произошёл после присоединения к коллаборации научной группы из ЛЯП ОИЯИ. Так, в 2015 году был введён в эксплуатацию новый кластер "Дубна", состоящий из 192 оптических модулей. На сегодняшний день детектор уже имеет 8 кластеров¹, они находятся на расстоянии 300 метров друг от друга. Каждый кластер состоит из 8 вертикальных гирлянд, на которых расположены стеклянные оптические модули: по 36 штук на каждой. Сейчас эффективный объем телескопа для регистрации астрофизических нейтрино с энергией в области одного ПэВ составляет 0.4 км³. По проекту объем установки к 2027 году должен составить порядка одного кубического километра.

Более подробное описание методов и задач, а также техническая информация о BAIKAL-GVD содержится в нейтринной программе ЛЯП ОИЯИ [2], а также в [3]. Ниже мы остановимся на основных составляющих эксперимента. Первостепенной задачей телескопа BAIKAL-GVD является регистрация астрофизических нейтрино сверхвысоких энергий и идентификация космических источников этих нейтрино. Возможными источниками галактических астрофизических нейтрино выступают остатки сверхновых, пульсары, двойные системы, содержащие

¹Количество кластеров было указано на момент написания главы. К настоящему времени, как было замечено в отзыве рецензента Л.Д. Колупаевой, детекторная система пополнилась ещё двумя кластерами.

Рис. 2.1: Слева: схематичный вид детектора BAIKAL-GVD. Справа: строение оптического модуля в развёртке.

черную дыру или нейтронную звезду и скопления молекулярных облаков, которые являются мишенями для космических лучей. Благодаря своему географическому положению, в поле зрения телескопа также попадает Стрелец А* - сверхмассивная чёрная дыра, находящаяся в центре Млечного Пути. Из внегалактических источников можно отметить активные ядра галактик, гамма-всплески, звездообразующие галактики и скопления галактик. Разнообразие источников накладывает жёсткие требования на точность определения энергии и направления прилёта нейтрино. Другие области применения нейтринного телескопа включают в себя непрямой поиск тёмной материи путем обнаружения нейтрино, образующихся при аннигиляции WIMP'ов на Солнце или в толще Земли. ВАІКАL-GVD также имеет возможность для обнаружения экзотических частиц, в частности, магнитных монополей.

энергии и направления прилёта нейтрино Метод определения черенковского излучения основан регистрации OTзаряженных на взаимодействии лептонов, рождающихся при нейтрино CO средой. Черенковское свечение является когерентным излучением диполей, образующихся в результате поляризации среды пролетающей заряженной

Схематичное изображение распространения Рис. 2.2: черенковского излучения. Слева: образуется световой конус с вершиной, движущейся (мюоном). сонаправлено вместе с заряженной частицей Справа: сферический черенковский фронт, образующийся из-за каскада. Необходимо отметить, что черенковское излучение каскадов имеет максимум при черенковском угле θ_c относительно оси каскада, но имеет широкое распределение, охватывающее весь телесный угол.

скоростью, превышающей скорость света в частицей COсреде, И возникает при возвращении этих диполей (поляризованных атомов) в исходное неполяризованное состояние. Так, взаимодействие мюонных нейтрино через заряженный ток порождает мюон, образующий фронт черенковского излучения в виде конуса, тогда как другие типы нейтринных реакций вызывают адронные и/или электромагнитные каскады, создающие сферический черенковский фронт (Рисунок 2.2). Таким образом, сигнальными событиями являются восходящие мюоны, возникающие при взаимодействии нейтрино в толще Земли или воде, а также электромагнитные и адронные каскады от СС-взаимодействий электронных и тау-нейтрино или NC-взаимодействий всех ароматов внутри объема детектирования. Фоновые события в основном представляют собой нисходящие мюоны, образующиеся от взаимодействий космических лучей в атмосфере.

3. Атмосферные нейтрино

3.1. Первичное космическое излучение

Первичное космическое излучение (космические лучи) – поток ядер, в основном протонов, зарождающихся и ускоряющихся в космическом пространстве с энергией $E > 10^8$ эВ, а также, электроны, рентгеновское, гамма-излучение и нейтрино. На данный момент ещё не существует окончательной общей теории происхождения космических лучей. Однако часто употребимой является модель В.Л. Гинзбурга, в которой он в качестве источников космических лучей предлагает вспышки сверхновых звёзд. Сравнение химического состава космических лучей и распространённости элементов в наблюдаемой Вселенной (Метагалактике) демонстрирует превышение тяжёлых ядер, а также существенный (более чем в 10⁵ раз) избыток лёгких ядер в космических лучах (Рисунок 3.2). Первое наблюдение, видимо, связано с их эффективным образованием, тогда как последнее может быть объяснено как фрагментация более тяжёлых ядер в лёгкие за время жизни первичного космического излучения. На этом основан один из методов определения возраста космических лучей: сопоставляя соотношение лёгких ядер к тяжёлым с вероятностью фрагментации последних, была получена оценка возраста космических лучей, которая составила порядка 10⁸ лет. Диапазон энергий первичного космического излучения, как было сказано ранее, составляет от 10⁸ до 10²⁰ эВ, и его энергетический дифференциальный спектр носит степенной характер

$$\frac{\mathrm{d}J}{\mathrm{d}E} \sim E^{-\gamma},\tag{3.1}$$

где $\gamma=2.7$ до энергий $\sim 10^{15}$ эВ. В области энергий $10^{15}\div 10^{16}$ эВ происходит излом спектра, в котором γ принимает значение $\gamma=$

Рис. 3.2: Слева: химический состав первичного космического излучения по сравнению с химическим составом вещества в Метагалактике. 1 - космические лучи. 2 - Метагалактика. Справа: энергетический спектр первичного космического излучения $E^{2.5}J$ в дифференциальной форме.

3.2 до энергий ~ 10^{18} эВ, так называемое "колено", а в районе 10^{19} эВ наблюдается второе изменение наклона спектра – "лодыжка" – где γ опять становится равным $\gamma = 2.7$ (Рисунок 3.2). Стоит отметить, что частицы максимальной в представленном диапазоне энергии 10^{20} эВ и выше вызывают повышенный интерес, так как теоретическая модель – гипотеза Грайзена, Зацепина, Кузьмина (ГЗК) – предсказывает обрезание спектра космических лучей в районе 10^{20} эВ. Этот эффект связан с взаимодействием первичных протонов с реликтовым излучением Вселенной. К настоящему времени обнаружено порядка 10 таких частиц, превышающих предел ГЗК [4], [5]¹.

3.2. Широкий атмосферный ливень

Атмосферные нейтрино высоких энергий рождаются при распадах пионов, каонов и очарованных частиц, образуемых в широком атмосферном ливне (ШАЛ), индуцированного космическими лучами, прошедшими через атмосферу Земли. Атмосфера Земли состоит в основном из азота (78.1%), кислорода (21%) и небольшой примеси углекислого газа, общее количество вещества в столпе воздуха от

¹По рекомендации рецензента Л.Д. Колупаевой добавлены соответствующие ссылки на работы, где приведено количество зарегистрированных частиц с энергией выше предела ГЗК.

уровня моря до границы атмосферы составляет около 1030 г/см², в то время как в космосе количество вещества, проходимого космическими лучами от источника до Земли, составляет 5 г/см² [6]. Космические лучи — это частицы высокой энергии, приходящие на Землю из Вселенной. Эти частицы, попав в атмосферу Земли, взаимодействуют с молекулами воздуха в высотной атмосфере. Адроны первичного излучения взаимодействия космического испытывают сильные С ядрами атомов воздуха, вызывая каскад вторичных частиц. В этих взаимодействиях рождаются различного рода частицы: пионы, каоны, нуклон-антинуклонные пары, гипероны и так далее. Характерной особенностью взаимодействия высокоэнергетических частиц космического излучения с ядрами атмосферы является эффект лидирования, который заключается в передаче, в среднем, 50% энергии первичной частицы одной из образующихся вторичных частиц. Такая частица в состоянии еще несколько раз провзаимодействовать в атмосфере, развивая адронный каскад. Рождённые в этих взаимодействиях пионы и другие частицы могут сами провзаимодействовать с ядрами атомов атмосферы, либо распасться, формируя мюонную, нейтринную и электрон-фотонную компоненты ливня.

3.3. Источники атмосферных нейтрино

Основными источниками мюонных нейтрино являются двухчастичные распады заряженных пионов π^{\pm} и каонов K^{\pm} по каналам

$$\pi^{-}(\pi^{+}) \to \mu^{-}(\mu^{+}) + \overline{\nu}_{\mu}(\nu_{\mu}),$$
 (3.2)

$$K^{-}(K^{+}) \to \mu^{-}(\mu^{+}) + \overline{\nu}_{\mu}(\nu_{\mu}),$$
 (3.3)

называемые $\pi_{\mu 2}^{\pm}$ и $K_{\mu 2}^{\pm}$, с относительными ширинами распада 99.98% и 63.56% соответственно, трёхчастичные распады заряженных каонов $K_{\mu 3}^{\pm}$ по каналам

$$K^{-}(K^{+}) \to \pi^{0} + \mu^{-}(\mu^{+}) + \overline{\nu}_{\mu}(\nu_{\mu}),$$
 (3.4)

и распад нейтрального каона $K^0_{L\mu3}$ по каналу

$$K^0 \to \pi^+(\pi^-) + \mu^-(\mu^+) + \nu_\mu(\overline{\nu}_\mu),$$
 (3.5)

с относительными ширинами распада 3.35% и 27.04% соответственно. Образующиеся мюоны μ^{\pm} также порождают нейтрино в ходе реакции распада по каналу

$$\mu^{-}(\mu^{+}) \to e^{-}(e^{+}) + \overline{\nu}_{e}(\nu_{e}) + \nu_{\mu}(\overline{\nu}_{\mu}),$$
 (3.6)

с почти 100% относительной шириной распада. Свой вклад в расчёт вносят распад

$$K_S^0 \to \pi^+(\pi^-) + \mu^-(\mu^+) + \nu_\mu(\overline{\nu}_\mu),$$
 (3.7)

с 4.56×10^{-4} и цепочки

$$K^{-}(K^{+}) \to \pi^{-}(\pi^{+}) + \pi^{0},$$
 (3.8)

$$K_S^0 \to \pi^+ + \pi^-,$$
 (3.9)

с 20.67% и 69.20% относительными ширинами распада соответственно. Для образующихся мюонных нейтрино с энергиями выше 100 ТэВ необходимо ещё учитывать распады очарованных частиц.

3.4. Взаимодействие нейтрино с веществом

3.4.1. Беспороговые процессы

Рассмотрим основные типы нейтринных взаимодействий в различных энергетических масштабах. При энергиях нейтрино $E_{\nu} \sim 0 \div 1$ МэВ идут беспороговые процессы взаимодействия, в частности, когерентное рассеяние нейтрино на нуклоне по каналу нейтрального тока

$$\nu + {}^Z_N A \to \nu + {}^Z_N A^*. \tag{3.10}$$

Рис. 3.3: Схематическое изображение, демонстрирующее разнообразие рождающихся вторичных частиц при взаимодействии адрона первичного космического излучения с молекулой атмосферы Земли [7].

Сечение данной реакции растёт квадратично с повышением числа нейтронов и протонов в ядре, причём зависимость от протонов сильно подавлена [8]. Ещё одним возможным процессом при таких малых энергиях является захват нейтрино радиоактивными ядрами

$$\nu_e + {}^Z_N A \to {}^{Z+1}_{N-1} A + e^-.$$
 (3.11)

Данный процесс достаточно интересен с экспериментальной точки зрения, например, с помощью него было предложено детектировать космологические нейтрино [9].

3.4.2. Низкоэнергетические ядерные процессы

При энергиях нейтрино $E_{\nu} \sim 1 \div 100$ МэВ становится возможным взаимодействие нейтрино с отдельными нуклонами ядра. Самым известным примером подобных реакций является обратный бетараспад для нейтрино

$$\overline{\nu}_e + p \to e^+ + n. \tag{3.12}$$

Наряду с процессом (3.12) можно поставить взаимодействие нейтрино с дейтроном, которое может протекать как через заряженный ток, так и через нейтральный ток соответственно

$$\nu_e + d \to e^- + p + p, \qquad (3.13)$$

$$\nu_l + d \to \nu_l + n + p. \tag{3.14}$$

Обе эти реакции активно использовались в экспериментах по детектированию нейтрино. Так, обратный бета-распад использовался в эксперименте KamLAND по детектированию реакторных антинейтрино, также именно по этому каналу нейтрино были впервые зарегистрированы [1], а рассеяние нейтрино на дейтроне использовалось в эксперименте SNO, где детектор был наполнен тяжёлой водой (D_2O).

3.4.3. Переходная область

В интервале энергий $E_{\nu} \sim 0.1 \div 20$ ГэВ, часто называемым "переходной областью", происходит множество конкурирующих друг с другом процессов. При квазиупругом взаимодействии нейтрино рассеивается на нуклоне через заряженный ток с превращением нуклонамишени в его пару

$$\nu_l + n \to l^- + p, \tag{3.15}$$

$$\overline{\nu}_l + p \to l^+ + n. \tag{3.16}$$

Возможно также рассеяние нейтрино на нуклоне по каналу нейтрального тока, называемое упругим

$$\nu(\overline{\nu}) + n \to \nu(\overline{\nu}) + n, \qquad (3.17)$$

$$\nu(\overline{\nu}) + p \to \nu(\overline{\nu}) + p. \tag{3.18}$$

Помимо упругого и квазиупругого рассеяния следует отметить неупругое взаимодействие нейтрино с нуклоном. При достаточной энергии нейтрино могут возбудить нуклон-мишень до возбужденного состояния, создавая

тем самым барионный резонанс (N^*) , который впоследствии распадается преимущественно на пион и нуклон

$$\nu_l(\overline{\nu}_l) + N \to l^-(l^+) + N^*, \qquad (3.19)$$

$$\downarrow$$

$$\pi + N', \qquad (3.20)$$

где N, N' = n, p. Данный механизм взаимодействия является наиболее распространённым способом образования пионов для нейтрино промежуточных энергий. При неупругом взаимодействии нейтрино со свободным нуклоном возможно семь каналов реакции образования однопионных резонансов

$$\nu_l(\overline{\nu}_l) + p \to l^-(l^+) + p + \pi^+(\pi^-),$$
 (3.21)

$$\nu_l(\overline{\nu}_l) + n(p) \to l^-(l^+) + p(n) + \pi^0,$$
 (3.22)

$$\nu_l(\overline{\nu}_l) + n \to l^-(l^+) + n + \pi^+(\pi^-),$$
 (3.23)

$$\nu_l(\overline{\nu}_l) + p \to \nu_l(\overline{\nu}_l) + p + \pi^0, \qquad (3.24)$$

$$\nu_l(\overline{\nu}_l) + p \to \nu_l(\overline{\nu}_l) + n(p) + \pi^+(\pi^0), \qquad (3.25)$$

$$\nu_l(\overline{\nu}_l) + n \to \nu_l(\overline{\nu}_l) + n + \pi^0, \qquad (3.26)$$

$$\nu_l(\overline{\nu}_l) + n \to \nu_l(\overline{\nu}_l) + p + \pi^-. \tag{3.27}$$

Стоит отметить, что также возможен процесс образования однопионного состояния через когерентное рассеяние нейтрино на всём ядре, в котором ядро получает крайне малую энергию отдачи. Процесс может идти как через заряженный, так и через нейтральный ток соответственно

$$\nu_l(\overline{\nu}_l) + {}^Z_N A \to l^-(l^+) + {}^Z_N A + \pi^+(\pi^-), \qquad (3.28)$$

$$\nu_l(\overline{\nu}_l) + {}^Z_N A \to \nu_l(\overline{\nu}_l) + {}^Z_N A + \pi^0.$$
(3.29)

Помимо образования пионов возможно рождение частиц со странными кварками – каонов. Поперечные сечения данных процессов в силу большой массы каонов небольшие, однако эти реакции играют важную роль, так как они являются источником потенциального фона для поиска распада протона по каналу $p \to K^+ \overline{\nu}$.

3.4.4. Глубоко неупругое рассеяние

Перейдём теперь к области высокоэнергетических нейтрино с энергиями $E_{\nu} \sim 20 \div 500$ ГэВ. При таких высоких значениях энергии нейтрино способны различать внутреннюю структуру нуклонов. Таким образом, становится возможным взаимодействие нейтрино с кварком внутри нуклона. Данный процесс носит название глубоко неупругого pacceяния (Deep inelastic scattering – DIS). Он является доминирующим процессом взаимодействия нейтрино с веществом при больших энергиях. Глубоко неупругое рассеяние нейтрино уже давно используется для проверки стандартной модели и исследования нуклонной структуры. На протяжении многих лет в экспериментах измерялись сечения, электрослабые параметры, константы связи, структурные функции нуклонов и скейлинговые переменные с использованием таких процессов. При глубоко неупругом рассеянии нейтрино рассеивается на кварке внутри нуклона посредством обмена виртуальным W- или Z-бозоном, производящим лептон и адронную систему X в конечном состоянии. Возможны процессы, идущие через заряженный и нейтральный токи соответственно

$$\nu_l(\overline{\nu}_l) + N \to l^-(l^+) + X, \qquad (3.30)$$

$$\nu_l(\overline{\nu}_l) + N \to \nu_l(\overline{\nu}_l) + X. \tag{3.31}$$

При ультравысоких энергиях $E_{\nu} \sim 0.5$ ТэВ ÷ 1 ЭэВ продолжается процесс глубоко неупругого рассеяния нейтрино, его сечения являются расширением высокоэнергетической партонной модели, которая применялась в предыдущем диапазоне энергий. Однако есть несколько отличительных особенностей ультравысокого диапазона энергий, которые дают ему особый статус. Во-первых, при столь высоких энергиях сечения взаимодействия нейтрино и антинейтрино с партоном становятся практически идентичными. Во-вторых, происходит сильное

резонансное усиление сечения взаимодействия электронного антинейтрино с электроном среды $\overline{\nu}_e e^-$ из-за образования промежуточного Wбозона [10], [11]. Обычно, процесс рассеяния нейтрино на электронах является сильно подавленным относительно рассеяния на нуклонах, что делает данный резонанс очень примечательным. Такие высокие сечения могут привести к непрозрачности Земли для нейтрино определённого диапазона энергий, где находится данный резонанс, что – помимо прочего – может служить инструментом для поиска отклонений от предсказаний Стандартной модели в случае присутствия "Новой физики" [12].

4. Теоретический подход

4.1. Формализм глубоко неупругого рассеяния

Бо́льшая часть энергетического спектра атмосферных нейтрино попадает в диапазон энергий, соответствующих глубоко неупругому рассеянию. Поэтому в дальнейшем изложении будет использован формализм DIS, в частности, введены бьёркеновские переменные

$$y = \frac{E' - E}{E'} = 1 - \frac{E}{E'},\tag{4.1}$$

$$x = \frac{Q^2}{2M\nu},\tag{4.2}$$

где $\nu=E'-E\geq 0$ - потеря энергии лептоном в системе покоя нуклона, E',E- начальная и конечная энергии нуклона соответственно,

$$Q^{2} = -Q^{2} = 2(EE' - \mathbf{kk}') - m_{l}^{2} - m_{l'}^{2} \approx$$
(4.3)

$$\approx 4EE' \sin^2(\theta/2) \tag{4.4}$$

- квадрат передачи 4-импульса. Последнее выражение получено в предположении малости масс лептонов l, l', чему удовлетворяют нейтрино. Величина x имеет смысл доли импульса нуклона, переносимой партоном, y - доля энергии, потерянной лептоном при рассеянии. Понятно, что диапазон переменной $0 \le y \le 1$. Рассмотрим значения, которые принимает переменная x. Значение x = 1 соответствует упругому рассеянию, область x < 1 отвечает глубоко неупругому рассеянию. Когда лептон рассеивается на ядерной мишени, но при этом величина x по-прежнему вычисляется в соответствии с кинематикой лептон-нуклонного рассеяния, то экспериментально регистрируемые события могут иметь значения x > 1, так как это соответствует кумулятивной кинематической области. Однако

Рис. 4.1: Кинематические переменные для описания глубоко неупругого рассеяния лептона нуклоном. Величины $\mathcal{K}', \mathcal{K} - 4$ -импульсы начального и конечного лептонов, $\mathcal{P} - 4$ -импульс нуклона с массой M, W – масса системы X, получившей отдачу. Обмениваемая частица - промежуточный бозон (γ, W^{\pm}, Z^0) ; он переносит к нуклону 4-импульс $\mathcal{Q} = \mathcal{K}' - \mathcal{K}$.

эта область во взаимодействии нейтрино с нуклонами не рассматривается. Таким образом, диапазон переменной x аналогичен переменной y.

4.2. Решение уравнения переноса для атмосферных нейтрино

Приведённый ниже подход основан на работе [13]. В этом разделе мы опишем метод " \mathcal{Z} – фактора", который был применён для случая распространения нейтрино в среде. Результатом прогонки этого метода является дифференциальный энергетический спектр нейтрино $F_{\nu}(E, x)$ на глубине x, определяемой соотношением

$$x = \int_{0}^{L} \rho(L') dL',$$
 (4.5)

где $\rho(L)$ - плотность среды на пути распространения нейтрино на расстоянии L от границы. Значение плотности для Земли определяется по модели распределения вещества в толще Земли PREM - Preliminary reference earth model [14]. В функции потока $F_{\nu}(E, x)$ отсутствует информация о телесных углах прилёта нейтрино, так как начальный спектр атмосферных нейтрино берётся усреднённым по углам. В

Рис. 4.2: Пояснение к построению уравнения переноса для случая усреднённого по углам начального спектра атмосферных нейтрино.

следующем разделе мы разовьём этот метод на случай зависимости потока нейтрино, в том числе, от угла прилёта.

Для начала составим одномерное уравнение переноса для нейтрино. Поток нейтрино на глубине $x + \Delta x$ с энергией E равен потоку нейтрино на глубине x с энергией E минус нейтрино, испытавшие рассеяние, и плюс нейтрино, имеющие первоначально энергию E', которые после рассеяния приобрели энергию E (Рисунок 4.2). Таким образом, изменение потока на шаге глубины Δx даётся уравнением баланса как прибыль частиц в поток минус убыль частиц из него. Преобразуя слагаемые к виду интегродифференциального уравнения, можно записать описанную выше схему в виде

$$\frac{\partial F_{\nu}(E,x)}{\partial x} = \frac{1}{\lambda_{\nu}(E)} \left[\int_{0}^{1} F_{\nu}(E_{y},x) \Phi_{\nu}(y,E) \frac{\mathrm{d}y}{1-y} - F_{\nu}(E,x) \right], \quad (4.6)$$

с граничным условием в виде начального спектра атмосферных нейтрино при нулевой глубине $F_{\nu}(E,0) \equiv F_{\nu}^{0}(E)$. Здесь, $\lambda_{\nu}(E)$ – длина взаимодействия нейтрино, определяемая выражением

$$\frac{1}{\lambda_{\nu}(E)} = \sum_{T} N_T \sigma_{\nu T}^{tot}(E), \qquad (4.7)$$

где N_T – число рассеивателей в одном грамме среды, T – тип рассеивателя (протон, нейтрон), $\sigma_{\nu T}^{tot}(E)$ – полное сечение νT -взаимодействия. Функция $\Phi_{\nu}(y, E)$ называется "функцией регенерации" и даётся выражением

$$\sum_{T} N_T \frac{\mathrm{d}\sigma_{\nu T \to \nu X}(y, E_y)}{\mathrm{d}y} = \Phi_{\nu}(y, E) \sum_{T} N_T \sigma_{\nu T}^{tot}(E), \qquad (4.8)$$

где $E_y = \frac{E}{1-y}$. Будем искать решение уравнения 4.6 в виде

$$F_{\nu}(E,x) = F_{\nu}^{0}(E) \exp\left\{-\frac{x}{\Lambda_{\nu}(E,x)}\right\}.$$
 (4.9)

Подставляя вид решения 4.9 в исходное уравнение, в силу положительной знакоопределённости правой части уравнения, левая часть так же должна иметь положительное значение, откуда следует, что справедливо неравенство

$$\Lambda_{\nu}(E, x) > \lambda_{\nu}(E). \tag{4.10}$$

Тогда можно определить эффективную длину поглощения нейтрино как

$$\Lambda_{\nu}(E,x) = \frac{\lambda_{\nu}(E)}{1 - \mathcal{Z}_{\nu}(E,x)},\tag{4.11}$$

где введена положительно определённая функция $\mathcal{Z}_{\nu}(E, x)$, называемая " \mathcal{Z} – фактором", по аналогии с подобной функцией в методе решения уравнений адронных каскадов [15]. Подставляя (4.9) и (4.11) в (4.6), получаем для последующего интегрирования уравнение на " \mathcal{Z} – фактор"

$$\mathcal{Z}_{\nu}(E,x) = \frac{1}{x} \int_{0}^{x} \int_{0}^{1} \eta_{\nu}(y,E) \Phi_{\nu}(y,E) e^{-x'\mathcal{D}_{\nu}(E,E_{y},x')} \mathrm{d}x' \mathrm{d}y, \qquad (4.12)$$

где

$$\mathcal{D}_{\nu}(E, E_y, x) = \frac{1 - \mathcal{Z}_{\nu}(E_y, x)}{\lambda_{\nu}(E_y)} - \frac{1 - \mathcal{Z}_{\nu}(E, x)}{\lambda_{\nu}(E)}, \qquad (4.13)$$

$$\eta_{\nu}(y,E) = \frac{F_{\nu}^{0}(E_{y})}{F_{\nu}^{0}(E)(1-y)}.$$
(4.14)

Найдём теперь значение " $\mathcal{Z}-$ фактора". Для тонкого поглотителя (x=0)

решение получается мгновенно из (4.12) в виде квадратуры

$$\mathcal{Z}_{\nu}(E,0) = \int_{0}^{1} \eta_{\nu}(y,E) \Phi_{\nu}(y,E) dy \equiv Z_{\nu}^{0}(E).$$
(4.15)

Аппроксимация " \mathcal{Z} – фактора" нулевым приближением $Z^0_{\nu}(E)$ допустима при выполнении условия [13]

$$\frac{x}{\lambda_{\nu}(E)} \ll \frac{2Z_{\nu}^{0}(E)}{|\Delta_{\nu}^{1}(E)|},$$
(4.16)

где

$$\Delta_{\nu}^{1}(E) = \int_{0}^{1} \eta_{\nu}(y, E) \Phi_{\nu}(y, E) \left[\left(1 - Z_{\nu}^{0}(E_{y}) \right) \frac{\lambda_{\nu}(E)}{\lambda_{\nu}(E_{y})} - \left(1 - Z_{\nu}^{0}(E) \right) \right] \mathrm{d}y.$$

$$(4.17)$$

Наконец, найдём решение " \mathcal{Z} — фактора" для всех значений глубины и энергии. Будем решать уравнение (4.12) с помощью итерационного алгоритма. Определим

$$D_{\nu}^{(n)}(E, E_y, x) = \frac{1 - Z_{\nu}^{(n)}(E_y, x)}{\lambda_{\nu}(E_y)} - \frac{1 - Z_{\nu}^{(n)}(E, x)}{\lambda_{\nu}(E)}, \qquad (4.18)$$

$$Z_{\nu}^{(n+1)}(E,x) = \frac{1}{x} \int_{0}^{x} \int_{0}^{1} \eta_{\nu}(y,E) \Phi_{\nu}(y,E) e^{-x' D_{\nu}^{(n)}(E,E_{y},x')} \mathrm{d}x' \mathrm{d}y.$$
(4.19)

Подразумевая, что эффективная длина поглощения $\Lambda_{\nu}(E, x)$ не должна сильно превышать по своему значению длину взаимодействия нейтрино $\lambda_{\nu}(E)$, выберем нулевое приближение равным нулю $Z_{\nu}^{(0)}(E, x) = 0$. Тогда

$$D_{\nu}^{(0)}(E, E_y, x) = \frac{1}{\lambda_{\nu}(E_y)} - \frac{1}{\lambda_{\nu}(E)} \equiv D_{\nu}(E, E_y), \qquad (4.20)$$

Рис. 4.3: Пояснение к построению уравнения переноса для случая зависимости потока от телесного угла прилёта нейтрино.

и первое приближение будет иметь следующий вид

$$Z_{\nu}^{(1)}(E,x) = \int_{0}^{1} \eta_{\nu}(y,E) \Phi_{\nu}(y,E) \left[\frac{1 - e^{-xD_{\nu}(E,E_{y})}}{xD_{\nu}(E,E_{y})} \right] \mathrm{d}y.$$
(4.21)

Алгоритм достаточно быстро сходится для различных моделей начальных спектров атмосферных нейтрино, поэтому для расчёта потока часто достаточно иметь значение " \mathcal{Z} — фактора" в первом приближении $Z_{\nu}^{(1)}(E, x)$.

4.3. Уравнение переноса в случае зависимости от телесного угла

Предыдущее рассмотрение включает в себя начальный спектр атмосферных нейтрино, усреднённый по телесным углам прилёта. Разовьём вышеописанный метод для определения потоков нейтрино в случае зависимости от угла прилёта. Составим по аналогии уравнение переноса. Поток нейтрино на глубине $x + \Delta x$ с фиксированной энергией E и телесным углом Ω равен потоку нейтрино на глубине x с E и Ω минус нейтрино, испытавшие рассеяние, и плюс нейтрино, имеющие первоначально энергию E' и телесный угол Ω' , которые после рассеяния приобрели E и Ω (Рисунок 4.3). Тогда уравнение переноса будет иметь вид

$$\frac{\partial F_{\nu}(E,\Omega,x)}{\partial x} = \int_{E}^{\infty} \int_{4\pi} F_{\nu}(E',\Omega',x) \sum_{T} N_{T} \frac{d^{2}\sigma_{\nu T \to \nu X}(E',\Omega')}{dEd\Omega} ddE'\Omega' - \frac{F_{\nu}(E,\Omega,x)}{\lambda_{\nu}(E)}.$$
(4.22)

Замечая, что процесс рассеяния зависит только от относительного

телесного угла рассеяния, и преобразуя конечную энергию нейтрино E через коэффициент Бьёркена y по формуле (4.1), можно переписать выражение для дифференциального сечения

$$\frac{\mathrm{d}^2 \sigma_{\nu T \to \nu X}(E', \Omega')}{\mathrm{d}E \mathrm{d}\Omega} = \frac{1}{1 - y} \frac{\mathrm{d}^2 \sigma_{\nu T \to \nu X}(E', \Theta)}{\mathrm{d}E' \mathrm{d}\Omega'},\tag{4.23}$$

где Θ – это относительный угол рассеяния, который определяется выражением

$$\cos\Theta = \cos\theta\cos\theta' - \sin\theta\sin\theta'\cos(\phi - \phi'), \qquad (4.24)$$

где θ, ϕ есть зенитный и азимутальный угол соответственно телесного угла Ω потока нейтрино, их штрихованные значения - углы, относящиеся к нейтрино, имеющие первоначально телесный угол Ω' . Учитывая инвариантное равенство

$$\frac{\mathrm{d}^2 \sigma_{\nu T \to \nu X}(E', \Theta)}{\mathrm{d}E' \mathrm{d}\Omega'} \mathrm{d}E' \mathrm{d}\Omega' = \frac{\mathrm{d}^2 \sigma_{\nu T \to \nu X}(y, E_y, \Theta)}{\mathrm{d}y \mathrm{d}\Omega'} \mathrm{d}y \mathrm{d}\Omega', \qquad (4.25)$$

запишем преобразованное уравнение переноса

$$\frac{\partial F_{\nu}(E,\Omega,x)}{\partial x} = \frac{1}{\lambda_{\nu}(E)} \left[\int_{0}^{1} \int_{4\pi}^{1} F_{\nu}(E_{y},\Omega',x)\Psi_{\nu}(y,E,\Theta) \frac{\mathrm{d}y\mathrm{d}\Omega'}{1-y} - F_{\nu}(E,\Omega,x) \right],\tag{4.26}$$

где

$$\sum_{T} N_{T} \frac{\mathrm{d}\sigma_{\nu T \to \nu X}(y, E_{y}, \Theta)}{\mathrm{d}y \mathrm{d}\Omega'} = \Psi_{\nu}(y, E, \Theta) \sum_{T} N_{T} \sigma_{\nu T}^{tot}(E).$$
(4.27)

Здесь введено аналогичное обозначение "функции регенерации" $\Psi_{\nu}(y, E, \Theta)$ для случая зависимости от углов прилёта, как и в формуле (4.8). Разложим функцию потока $F_{\nu}(E, \Omega, x)$ по сферическим функциям и $\Psi_{\nu}(y, E, \Theta)$ по полиномам Лежандра

$$F_{\nu}(E,\Omega,x) = \sum_{\substack{l=0\\\infty}}^{\infty} \sum_{m=-l}^{l} F_{l}^{m}(E,x) Y_{l}^{m}(\Omega), \qquad (4.28)$$

$$\Psi_{\nu}(y, E, \Theta) = \sum_{l=0}^{\infty} \xi_l(y, E) P_l(\cos \Theta).$$
(4.29)

Далее мы предполагаем, что поток атмосферных нейтрино будет зависеть только от зенитного угла прилёта θ , что, в целом, соответствует действительности для ШАЛ. Подставляем разложения (4.28), (4.29) в (4.26) и используем теорему разложения для полиномов Лежандра

$$P_{l}(\cos\Theta) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} Y_{l}^{*m} (\theta', \phi) Y_{l}^{m}(\theta, \phi), \qquad (4.30)$$

где звёздочка сверху означает знак комплексного сопряжения. Вводя обозначение

$$\zeta_l(y, E) = \frac{4\pi}{2l+1} \xi_l(y, E)$$
(4.31)

и учитывая свойство ортонормированности сферических функций, получим

$$\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left\{ \frac{\partial F_l^m(E,x)}{\partial x} - \frac{1}{\lambda_{\nu}(E)} \left[\int_0^1 F_l^m(E_y,x) \zeta_k(y,E) \frac{\mathrm{d}y}{1-y} - F_l^m(E,x) \right] \right\} Y_l^m(\Omega) = 0.$$
(4.32)

Умножая уравнение (4.32) на $Y_n^k(\Omega)$ и интегрируя по всему единичному объёму Ω , получаем

$$\frac{\partial F_n^k(E,x)}{\partial x} = \frac{1}{\lambda_\nu(E)} \left[\int_0^1 F_n^k(E_y,x)\zeta_n(y,E) \frac{\mathrm{d}y}{1-y} - F_n^k(E,x) \right].$$
(4.33)

Осталось только заметить, что все решения уравнения (4.33) с фиксированным n имеют одинаковый вид вне зависимости от k. Поэтому этот индекс мы можем опустить. Окончательно получаем

$$\frac{\partial F_n(E,x)}{\partial x} = \frac{1}{\lambda_\nu(E)} \left[\int_0^1 F_n(E_y,x)\zeta_n(y,E) \frac{\mathrm{d}y}{1-y} - F_n(E,x) \right].$$
(4.34)

Сравнивая получившееся уравнение (4.34) с (4.6), замечаем, что они полностью идентичны друг другу по своей форме с точностью до обозначений. Поэтому для последующего интегрирования уравнения (4.34) мы можем применить метод " \mathcal{Z} – фактора", который был подробно разобран в предыдущем разделе.

5. Моделирование потоков атмосферных нейтрино

Рассмотрение произведено для начального потока мюонных нейтрино и антинейтрино ($\nu_{\mu} + \overline{\nu}_{\mu}$), однако его можно применить и для нейтрино других ароматов, введя соответствующие поправки в исходные данные. В качестве начального спектра атмосферных мюонных нейтрино был взят расчёт из [16], выполненный для эксперимента BAIKAL-GVD, с использованием модели адрон-ядерных взаимодействий Кимеля-Мохова (KM) [17] и модели спектра космических лучей Хилласа [18] и Гайссера [19] (H3a). График спектра, усреднённого по углам прилёта, приведён на рисунке 5.1. В качестве рабочей среды выбрана вода, а центрами рассеяния являются нуклоны молекулы воды. Для вычисления дифференциальных сечений взаимодействия мюонных нейтрино с нуклонами, расчёт которых был получен В.А. Наумовым и К.С. Кузьминым [20], используется пакет Deep inelastic scattering (сокращённо DIS) коллаборации BAIKAL-GVD, необходимые партонные функции плотности были взяты из библиотеки CERN PDFLIB [21].

5.1. Поток нейтрино, усреднённый по телесным углам

Следуя разделу 4.2., для начала приведём моделирование для начального потока нейтрино $F_{\nu}^{0}(E)$, усреднённого по зенитным углам прилёта, чтобы можно было углядеть основные закономерности модели, которые могут потеряться за техническими сложностями трёхмерной картины. Расчёт функции потока атмосферных мюонных нейтрино ν_{μ} проведён в энергетическом диапазоне 10 ÷ 10⁸ ГэВ для глубин от 0 до 10¹¹ г/см². Максимальная глубина в своём порядке соответствует глубине Земли в её диаметре. Программа состоит из двух классов, в одном из которых происходит расчёт "функции регенерации" $\Phi_{\nu}(y, E)$

Рис. 5.1: Слева сверху: начальный спектр атмосферных мюонных нейтрино $E_{\nu_{\mu}}^{2}F_{\nu_{\mu}}^{0}(E)$. Справа сверху: график зависимости "функции регенерации" $\Phi_{\nu}(y, E)$ от бьёркеновской переменной y для разных значений энергии нейтрино. Слева снизу: зависимость функции " \mathcal{Z} – фактора" от энергии нейтрино, значения глубины растут сверху вниз. Начальная глубина, равная 0 г/см², соответствует нулевому приближению $Z_{\nu}^{0}(E)$. Справа снизу: отношение потока атмосферных мюонных нейтрино на глубине x к начальному спектру нейтрино $F_{\nu_{\mu}}(E, x)/F_{\nu_{\mu}}^{0}(E)$

и запись таблицы данных в файл, а во втором выполняется расчёт функции " \mathcal{Z} – фактора" нулевого и первого порядка. По полученным значениям вычисляется зависимость потока атмосферных нейтрино от глубины и энергии. В программе также реализовано построение соответствующих графиков. Так, для нашей модели приведём графики зависимости "функции регенерации" от бьёркеновской переменной y, зависимость функции " \mathcal{Z} – фактора" от энергии нейтрино $E_{\nu_{\mu}}$, а также отношение потока атмосферных мюонных нейтрино $F_{\nu_{\mu}}(E, x)$ на глубине x к начальному спектру нейтрино $F_{\nu_{\mu}}^{0}(E)$ (Рисунок 5.1). Из графика зависимости " \mathcal{Z} – фактора" от энергии видно, что его первое приближение $Z_{\nu}^{(1)}(E_{\nu},x)$ является монотонно убывающей функцией с глубиной для любого фиксированного значения энергии. Как видно из нижних графиков рисунка 5.1, для низких энергий и небольших глубин в приведённом диапазоне нулевое приближение $Z_{\nu}^{0}(E)$ с достаточной точностью совпадает с $Z_{\nu}^{(1)}(E,x)$. Так, например, для энергии $E_{\nu_{\mu}} = 10^{4}$ ГэВ и глубины $x = 10^{6}$ г/см² получаем

$$1 - \frac{Z_{\nu}^{(1)}}{Z_{\nu}^{0}} \simeq 0.7 \times 10^{-6}.$$
 (5.1)

Для глубин $10^7 \div 10^{11}$ г/см² уже видно заметное уменьшение потоков нейтрино с ростом энергии, что влечёт необходимость использовать в расчётах $Z_{\nu}^{(1)}(E, x)$.

5.2. Поток нейтрино в зависимости от телесного угла

Рассмотрим теперь случай вклада в поток нейтрино с фиксированной энергией Е и телесным углом прилёта Ω . Диапазоны энергий нейтрино и глубин остаются прежними. В результате прогонки схемы, предложенной в разделе 4.3., для порядков разложения функции $\Psi_{\nu}(y, E, \Theta)$ по формуле (4.29) до 110 включительно, был оценён максимальный порядок этого разложения. Его значение оказалось равным 60 в узкой области энергий, в остальной области чувствуется доминирование порядков 30 и ниже (Рисунок 5.2). Нетрудно заметить преобладание чётных порядков над нечётными, что можно легко уследить в поведении функции $\eta_{\nu}(y, E)$ (4.14). Всё дело в небольшой разнице угла наклона функций коэффициентов разложения потока $F_n^0(E)$ для чётных и нечётных порядков, наклон нечётных коэффициентов оказывается чуть большим, чем у чётных, что ведёт к заметному уменьшению функции $\eta_{\nu}(y, E)$. Вследствие чего наблюдается просадка для нечётных порядков на графике для " \mathcal{Z} – фактора", в частности, при энергиях $10^4 \div 10^5$ ГэВ это особенно заметно. Появление доминирующих нечётных порядков, да и в целом непостоянность порядка при высоких энергиях в рассматриваемом диапазоне, можно связать с бо́льшей погрешностью вычислений в этой

Рис. 5.2: Доминирующие порядки полиномов Лежандра в разложении дифференциального сечения взаимодействия нейтрино с нуклонами (4.29) в зависимости от энергии нейтрино.

области, вызванной быстро осциллирующим поведением подынтегральных функций в формулах вычисления коэффициентов разложения (4.28), (4.29), а также с обрезанием функции потока при $E = 10^8$ ГэВ. На следующих двух страницах приведены графики потока атмосферных мюонных нейтрино $F_{\nu_{\mu}}(E, \Omega, x)$ в зависимости от косинуса зенитного угла прилёта $\cos(\theta)$ для различных диапазонов энергии при фиксированной глубине x (Рисунок 5.3), а также в зависимости от косинуса зенитного угла и глубины при фиксированных энергиях (Рисунок 5.4). Характерный вид графиков по оси косинуса зенитного угла связан с особенностью разложения функции потока по сферическим функциям $Y_l^m(\Omega)$.

Рис. 5.3: Графики зависимости функции потока $E_{\nu_{\mu}}^2 F_{\nu_{\mu}}^0(E)$ от косинуса зенитного угла для различных диапазонов энергии при нулевой глубине x = 0 г/см².

Рис. 5.4: Графики зависимости функции потока $E^2_{\nu_{\mu}}F^0_{\nu_{\mu}}(E)$ от косинуса зенитного угла и глубины при различных энергиях.

ВЫВОДЫ

В ходе данной работы был развит метод " \mathcal{Z} – фактора" на общий случай зависимости потока атмосферных нейтрино от телесного угла прилёта. Предпосылкой к данному обобщению является зависимость начального спектра атмосферных нейтрино от зенитного угла, в то время как от азимутального угла проявляется его независимость. Основополагающей идеей предложенного способа является сведение исходного уравнения переноса в случае зависимости от угла прилёта к совокупности уравнений переноса для одномерного случая. Такая преемственность происходит через разложение функции потока И дифференциального сечения взаимодействия нейтрино В ряд ПО Лежандра сферическим функциям И полиномам соответственно. Коэффициенты этих разложений как раз и будут удовлетворять одномерным уравнениям переноса. Следуя этому методу, был оценён разложения дифференциального максимальный порядок сечения взаимодействия нейтрино с нуклонами среды, который оказался достаточно велик, что может быть связано с невысокой точностью интегрирования быстро осциллирующих функций. Этот же порядок обрезает ряд в разложении потока атмосферных нейтрино по сферическим функциям. Произведя прогонку метода, изложенного в разделе 4.2., для каждого порядка, были получены функции " \mathcal{Z} – фактора" в первом приближении и соответствующие им коэффициенты разложения потока нейтрино. В результате были построены тепловые карты зависимости потока атмосферных мюонных нейтрино от косинуса зенитного угла прилёта, энергии и глубины. Для сравнения также произведён расчёт тех же величин в случае усреднённого по телесным углам прилёта потока атмосферных мюонных нейтрино.

ЗАКЛЮЧЕНИЕ

С точки зрения экспериментов на нейтринных телескопах, атмосферные нейтрино являются источником естественного неснижаемого фона, что существенно усложняет регистрацию астрофизических нейтрино. Для того чтобы была возможность отсеивать события, атмосферными нейтрино, необходимо связанные с знать поток атмосферных нейтрино, который детектируется в эксперименте. С другой стороны, поток атмосферных нейтрино является одной из компонент широкого атмосферного ливня, теоретическое описание которого в достаточной степени развито, благодаря чему этот поток может быть эффективно использован в качестве калибровочного потока нейтрино. Кроме того, поиск мгновенных нейтрино также является важной научной задачей.

Данная работа может быть использована в эксперименте BAIKAL-GVD для моделирования потоков атмосферных нейтрино, играющих роль фона, в то время как основной задачей нейтринного телескопа является определение энергии и телесного угла прилёта астрофизических нейтрино. В качестве исходных данных были взяты расчёты начального дифференциального атмосферных мюонных нейтрино И спектра нуклонами, произведённые в сечения взаимодействия нейтрино с коллаборации BAIKAL-GVD и учитывающие особенности рамках эксперимента. Также стоит отметить одно из преимуществ описанного метода " \mathcal{Z} – фактора", а именно его полуаналитическую форму, что позволяет ему, при изменении соответствующих начальных данных, быть применённым в других подобных экспериментах, в которых важен явный вид потоков атмосферных нейтрино.

В результате проведённой работы были получены следующие результаты:

- развит метод "*Z* фактора" на случай зависимости исходного потока от телесного угла;
- построено уравнение переноса нейтрино с фиксированной энергией и телесным углом прилёта, получено его решение методом "Z – фактора";
- написан пакет, производящий вычисление потоков атмосферных нейтрино и легко масштабирующийся в зависимости от начальных данных;
- оценён максимальный порядок разложения дифференциального сечения взаимодействия нейтрино с нуклонами по полиномам Лежандра, произведён численный расчёт "Z – фактора" в нулевом и первом приближениях;
- получен явный вид потока атмосферных нейтрино в зависимости от глубины, энергии и зенитного угла прилёта. Построены соответствующие графики.

Студент	Завьялов С.И.
подпись студент	'a
Научный руководитель _ по	Наумов Д.В.
Зав. кафедрой	
академик РАН подпись з	Матвеев В.А. ав. кафедрой

«____» ____2022 г.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- C.L. Cowan, JR., F. Reines, F.B. Harrison, H.W. Kruse and A.D. Mcguire. Detection of the Free Neutrino: a Confirmation // SCIENCE, 20 Jul 1956, Vol 124, Issue 3212, pp. 103-104, DOI: 10.1126/science.124.3212.103
- V.A. Bednyakov, D.V. Naumov. The White Book. JINR Neutrino program // https://dlnp.jinr.ru/en/component/edocman/topical-plan/the-whitebook
- I. Belolaptikov Zh.-A. Dzhilkibaev. Neutrino Telescope in Lake Baikal: Present and Nearest Future // 37th International Cosmic Ray Conference (ICRC 2021), July 12th – 23rd, 2021, DOI: https://doi.org/10.22323/1.395.002
- 4. R.U. Abbasi et al. First Observation of the Greisen-Zatsepin-Kuzmin Suppression // Phys. Rev. Lett. 100, 101101 – Published 10 March 2008, DOI: https://doi.org/10.1103/PhysRevLett.100.101101
- 5. E.Parizot (for the Auger Collaboration). The Pierre Auger Observatory: status, results and perspective // Invited talk at the International Symposium on Astronomy and Astrophysics of the Extreme Universe, March 22-23, 2007, RIKEN, Tokyo (Japan), DOI: https://doi.org/10.48550/arXiv.0709.2500
- В.С. Мурзин. Астрофизика космических лучей. Учебное пособие для вузов. - М.: Университетская книга; Логос, 2007. - 488 с. ISBN 978-5-98704-171-6
- Л.И. Мирошниченко. Большая российская энциклопедия // http://bre.mkrf.ru/physics/text/4943292.

- J.A. Formaggio, G.P. Zeller. From eV to EeV: Neutrino cross sections across energy scales // Reviews of modern physics, volume 84, july–september 2012, DOI: 10.1103/RevModPhys.84.1307
- A.G. Cocco, G. Mangano, M. Messina. Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei // JCAP 0706:015, 2007, J.Phys.Conf.Ser.110:082014, 2008, arXiv:hep-ph/0703075
- 10. S.L. Glashow. Resonant Scattering of Antineutrinos // Phys. Rev. 118, 316,
 1 April 1960, DOI: https://doi.org/10.1103/PhysRev.118.316
- 11. Berezinsky, V. S., and A. Z. Gazizov, JETP Lett. 25, 254, 1977
- R. Gandhi, C. Quigg, M.H. Reno, I. Sarcevic. Ultrahigh-energy neutrino interactions // Astroparticle Physics Volume 5, Issue 2, Pages 81-110, August 1996
- V.A. Naumov, L. Perrone. Neutrino Propagation Through Matter // Astropart.Phys.10:239-252, 1999, DOI: https://doi.org/10.1016/S0927-6505%2898%2900046-2
- A.M. Dziewonski, D.L. Anderson. Preliminary reference earth model // Phys. Earth Planet. Interiors, 1981, T. 25, C. 297—356, DOI: 10.1016/0031-9201(81)90046-7.
- 15. V.A. Naumov and T.S. Sinegovskaya. Simple method for solving transport equations describing the propagation of cosmic-ray nucleons in the atmosphere // Phys. At. Nucl. 63, 1927 (2000), DOI: https://doi.org/10.1134/1.1335089
- T.S. Sinegovskaya, A.D. Morozova, S.I. Sinegovsky. High-energy neutrino fluxes and flavor ratio in the Earth's atmosphere // Physical review D 91, 063011, 2015, DOI: 10.1103/PhysRevD.91.063011
- A.N. Kalinovsky, N.V. Mokhov, Yu.P. Nikitin. Passage of High-Energy Particles through Matter // American Institute of Physics, New York, 1989
- A.M. Hillas. Cosmic Rays: Recent Progress and some Current Questions // arXiv:astro-ph/0607109v2.

- Gaisser. Spectrum of cosmic-ray nucleons, 19. T.K. kaon production, and the atmospheric ratio muon charge Astroparticle July 2012, Pages Physics, volume 35, Issue 12, 801-806, DOI: https://doi.org/10.1016/j.astropartphys.2012.02.010
- 20. K.S. Kuzmin. Neutrino scattering off nucleons and polarization of charged leptons in quasielastic reactions // Ph.D. Thesis, JINR, Dubna, 2009/04/01 (Ph.D. Thesis advisor V.A. Naumov, BLTP JINR).
- 21. H. Plothow-Besch. PDFLIB: A Library of all available parton density functions of the nucleon, the pion and the photon and the corresponding alpha-s calculations // Comput.Phys.Commun. 75, 1993, 396-416, DOI: 10.1016/0010-4655(93)90051-D