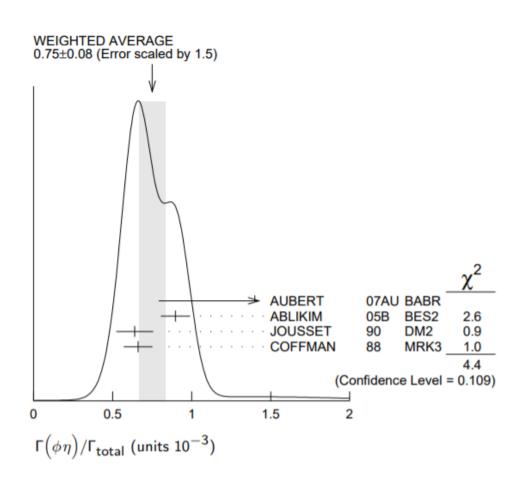
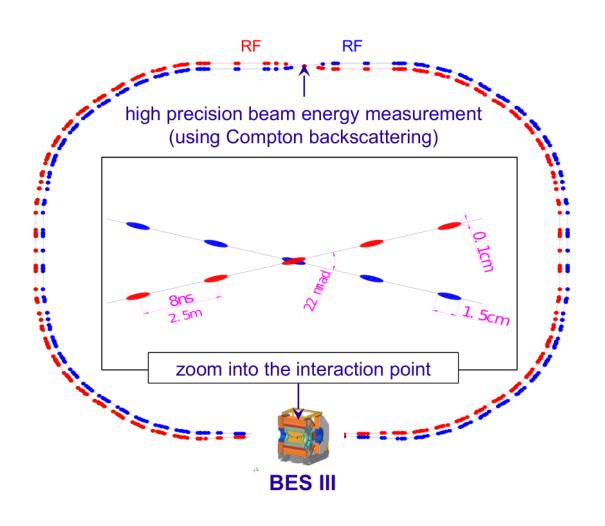
Измерение вероятности распада $J/\psi \to \eta \phi$ по каналам $\eta \to \gamma \gamma$ и $\phi \to \pi^- \pi^+ \pi^0$ в эксперименте BESIII


Погодин Святослав Николаевич ОИЯИ, ЛЯП, НЭОВП МГУ, ФФ, ФЭЧ, 209м

Нефедов Юрий Анатольевич ОИЯИ, ЛЯП, НЭОВП

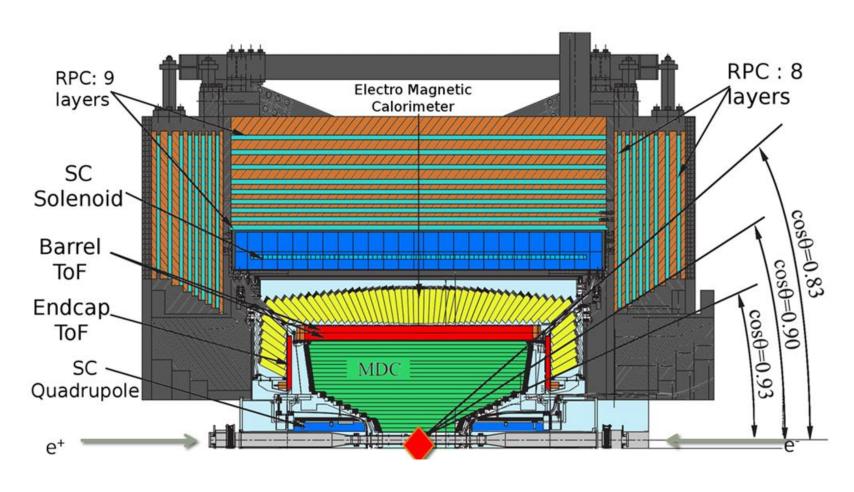
Структура презентации

- 1. Цель исследования
- 2. Эксперимент BESIII
- 3. Использованные данные
- 4. Отбор событий
- 5. Исследование интерференции между ω и ϕ
- 6. Описание данных с учетом интерференции
- 7. Расчет эффективности
- 8. Расчет относительной ширины и ошибок
- 9. Заключение


Цель исследования

Исследуется канал распада $J/\psi \to \eta \phi$, в котором $\eta \to \gamma \gamma$ и $\phi \to \pi^- \pi^+ \pi^0$. Ранее исследовался этот процесс по каналу $\phi \to K^+ K^-$ (см. рис.) и результаты противоречивы.

На данных BES3 имеется возможность исследовать этот же процесс с каналом распада $\phi \to \pi^+\pi^-\pi^0$ и определить парциальную ширину распада.


Ускоритель BEPCII

- Независимые пучки
- Пучки пересекаются под углом 22 мрад
- Энергия пучка меняется от 1 до 2.45 ГэВ (от 2 до 4.9 ГэВ суммарная энергия в системе центра масс)
- Высокая светимость

BESIII detector

NIM A614, 345(2010)

Acceptance: 93% of 4π

Использованные данные

Для работы взяты J/ψ данные 2009 года ((223.7 \pm 1.4) · 10⁶ событий) в формате Data Summary Tape (DST) полученные программой BOSS-6.6.4

MC inc – инклюзивное Монте Карло, набор 225М событий в формате DST также полученные программой BOSS-6.6.4

MC sig – для оценки эффективности было разыграно 100 000 событий с помощью BesEvenGen через цепочки распадов: $J/\psi \to \phi \eta$ (*HELAMP*), $\eta \to 2\gamma$ (*PHSP*), $\phi \to \rho \pi$ (84% *HELAMP*), $\phi \to \pi^+\pi^-\pi^0$ (16% *PHSP*)

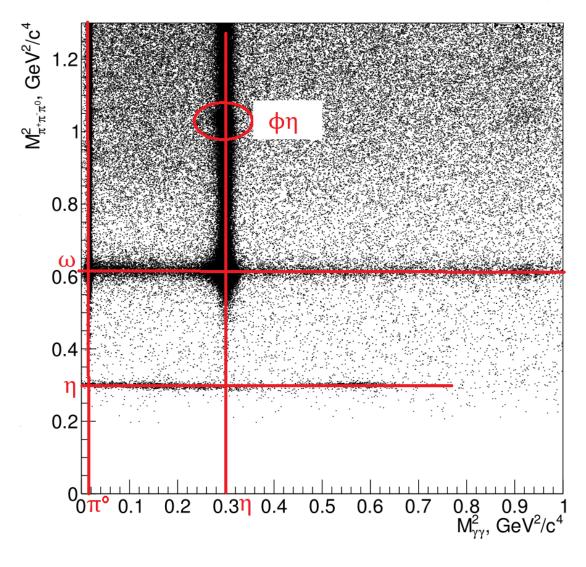
Анализ DST файлов осуществлялся с помощью программы Bean

Критерии отбора. Заряженные частицы.

Так как ищется распад $J/\psi \to \eta \phi$, $\eta \to \gamma \gamma$, $\phi \to \pi^- \pi^+ \pi^0$, то сигнатура события π^+ , π^- , 4γ . Были разработаны следующие критерии:

- 1. Все треки проходят достаточно близко к номинальной точки столкновения: $R_{xy} < 1$ мм, Z < 10 мм. Треки регистрируются дрейфовой камерой детектора: $\cos(\theta) < 0.93$
- 2. Событие содержит равное количество положительно и отрицательно заряженных треков. Заряженные пионы идентифицируются по dE/dx и TOF ($P(\pi) > P(K)$, $P(\pi) > P(p)$, $P(\pi) > 0.001$); отбираются события содержащие ровно по одному треку π^+ и π^-

Критерии отбора. Нейтральные треки.

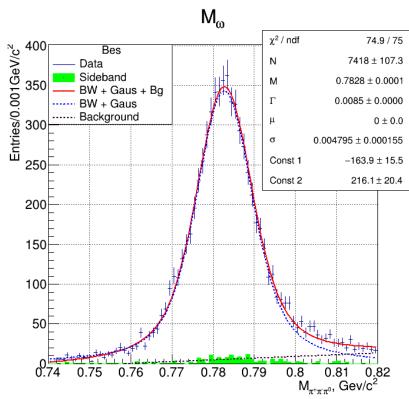

Отбираются события с четырьмя и более нейтральными треками каждый из которых удовлетворяет условиям:

- 1. Время в электромагнитном калориметре (EMC) $t \in [0; 700]$ нс
- 2. Энергия ЕМС: $E_{barrel} > 25 \ MeV$, $E_{end\ cup} > 50 \ MeV$
- 3. Угол между нейтральными и заряженными треками больше 10 градусов

Критерии отбора. Кинематический 5С фит.

- 1. Суммарный 4-х импульс $P_{4\gamma\pi^+\pi^-}$ равен суммарному 4-х импульсу пучковых частиц
- 2. Для двух фотонов $M_{2\gamma}^{inv} = M_{\pi^0}$; из 4 γ выбираются 2γ : $\chi_{2\gamma}^2 = \min \chi^2$
- 3. Если фотонов больше 4, то отбираются те, которые формируют минимальный $\chi^2(5C)$
- 4. Отбираем события с $\chi^2(5C) < 100$

Invariant masses of events in selection



Инвариантные массы

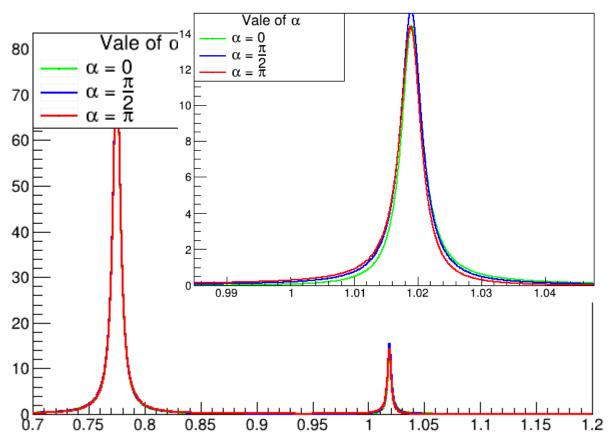

Квадраты инвариантных масс $\pi^+\pi^-\pi^0$ и 2γ в интересующем нас диапазоне:

$$M_{\pi^+\pi^-\pi^0}^2 < 1.3 \; GeV^2/c^4$$

 $M_{2\gamma}^2 < 1 \; GeV^2/c^4$

Фитирование распределением Брейт-Вигнера

Распределение инвариантной массы $\pi^+\pi^-\pi^0$ в районе ω



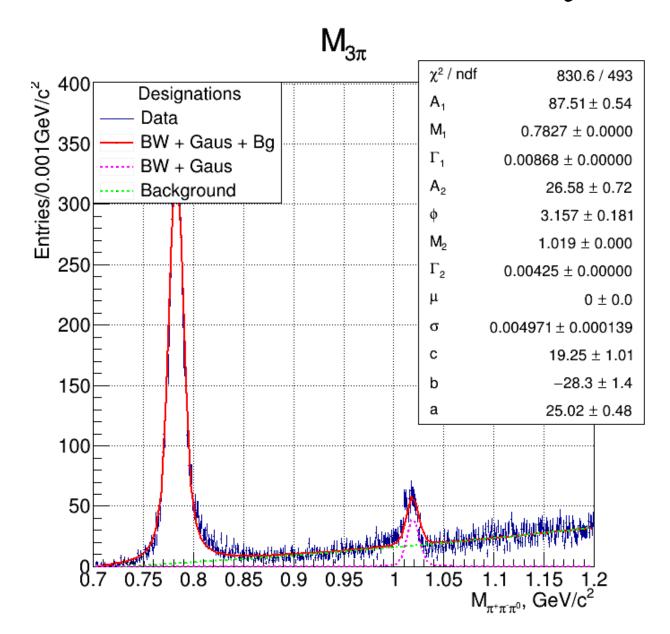
Распределение инвариантной массы $\pi^+\pi^-\pi^0$ в районе ϕ

Справа от пика ϕ в данных виден провал: возможна интерференция конечных состояний от распада ω и ϕ .

Изучение интерференции ϕ и ω

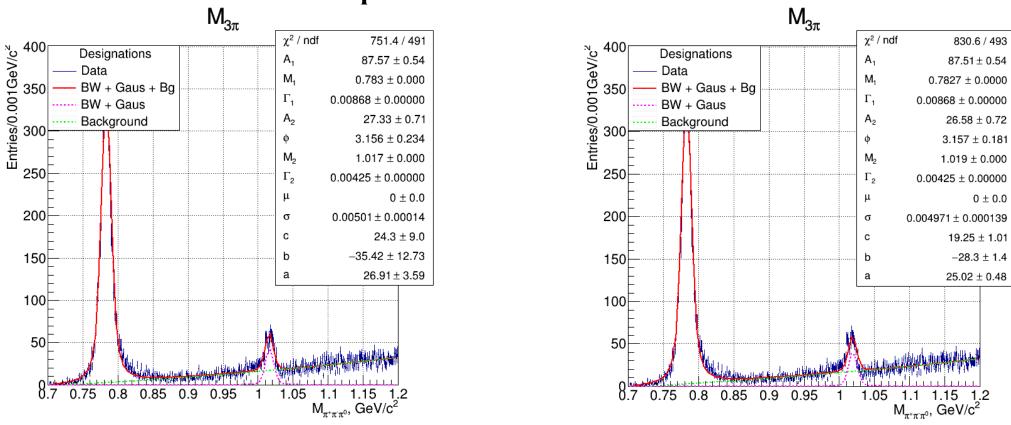
Описывается суммой амплитуд двух распределений Брейт-Вигнера:

$$\Psi = \left| A_1 + e^{-i\alpha} A_2 \right|^2$$
, где

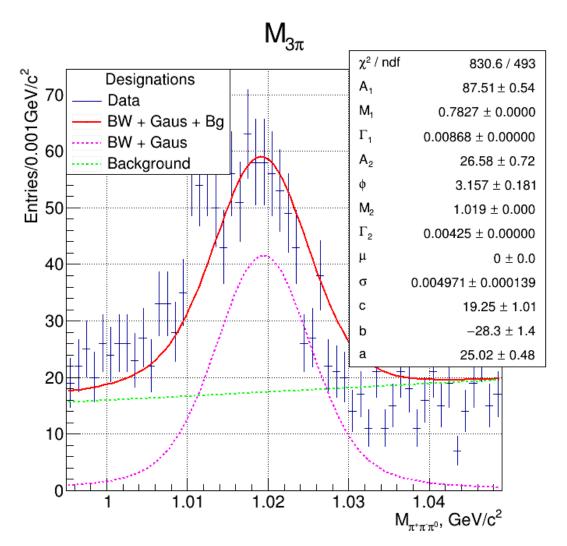

$$A_j = N_j \cdot \frac{\sqrt{k_j}}{\left(E^2 - M_j^2\right) + iM_j\Gamma_j}$$

$$k_j = \frac{2\sqrt{2M_j\Gamma_j\gamma_j}}{\pi\sqrt{M_j^2 + \gamma_j}}$$

$$\gamma_j = \sqrt{M_j^2(M_j^2 + \Gamma_j^2)}$$


Е, ГэВ

Описание данных с учетом интерференции

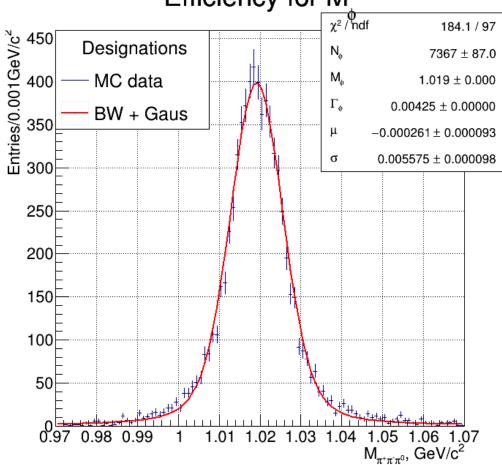

- Был проведен фит к распределению инвариантной массы $\pi^+\pi^-\pi^0$ в области $\omega-\phi$ функцией с интерференцией
- Фон описывался полиномами второго порядка
- Массы зафиксированы на табличных значениях

Сравнение результатов с закрепленными и незакрепленными массами

Когда массы участвуют в фите: $M_{\omega}=0.783~\Gamma$ эВ почти не изменяется, в то время как $M_{\phi}=1.017~\Gamma$ эВ сдвигается на 2 МэВ'а.

Нахождение N_{ϕ}

 N_{ϕ} вычисляется как интеграл от $|A_2|^2$ в области от 0.980 до 1.058 ГэВ. Параметры функции A_2 берутся из фита. На картинке $|A_2|^2$ показан розовой пунктирной линией.


 $\sigma_{N_{\phi}}$ вычисляется с использованием ковариационной матрицы параметров, полученных в фите.

$$N_{\phi} = 682 \pm 37 -$$
закрепленные массы

$$N_{\phi} = 720 \pm 37$$
 – не закрепленные массы

Расчет эффективности

Для оценки эффективности использовалось сигнальное МС. Расчет производится по формуле:

$$\epsilon = \frac{N_{\phi}}{N_{total}}$$

где N_{ϕ} вычислялось также, как и для данных.

После подставки значений и расчета значения и погрешностей:

$$\epsilon = 7.03 \pm 0.08 \%$$

Расчет ширины распада и погрешностей. Статистическая ошибка

Парциальная ширина распада Ј/ $\psi \to \phi \eta$, измеренная по каналам $\eta \to \gamma \gamma$ и $\phi \to \pi^- \pi^+ \pi^0$:

$$Br(J/\psi \to \phi \eta) = \frac{N_{\phi}}{N_{J/\psi} \cdot \epsilon \cdot Br(\eta \to \gamma \gamma) \cdot Br(\phi \to \pi^- \pi^+ \pi^0)} = 7.22 \cdot 10^{-4}$$

Статистическая ошибка:

$$\sigma_{Br(J/\psi \to \phi \eta)}^2 = \frac{\sigma_{N_{\phi}}^2}{N_{\phi}^2} \cdot Br^2(J/\psi \to \phi \eta) = (0.39 \cdot 10^{-4})^2$$

Оценка систематических погрешностей

Систематическая ошибка находилась как сумма относительных ошибок, среди которых:

- Ошибка на число J/ψ в данных: $\sigma_{I/\psi} = 0.05 \cdot 10^{-4}$
- 2) Ошибки ширин распадов $\phi \to \pi^+\pi^-\pi^0$ и $\eta \to \gamma\gamma$: $\sigma_{\phi \to \pi^+\pi^-\pi^0} = 0.33 \cdot 10^{-4}, \, \sigma_{\eta \to \gamma\gamma} = 0.20 \cdot 10^{-4}$
- 3) Ошибка на эффективность: конечная статистика MC и различие в эффективности реконструкции треков в данных и MC: 0.45 · 10⁻⁴

Считая, что все эти источники статистически независимы и складывая ошибки квадратично получим: $\sigma_{syst} = 0.48 \cdot 10^{-4}$

Систематические погрешности оценены не полностью: - нет систематики связанной с описанием интерференции - нет систематики связанной с критериями отбора

Заключение

Суммируя выше сказанное, кратко перечислим основные этапы работы:

- На основе программного обеспечения эксперимента BESIII написана программа для отбора и анализа событий процесса $J/\psi \to \phi \eta, \ \phi \to \pi^+\pi^-\pi^0, \eta \to \gamma \gamma.$
- Осуществлен отбор событий искомого процесса в данных по рождения Ј/ψ, набранных экспериментом BESIII в 2009 году, а так же в "официальном" BESIII Монте-Карло для распадов Ј/ψ по всем возможным каналам.
- Выполнено Монте-Карло моделирование изучаемого процесса.
- Проведен анализ фоновых процессов и разработана процедура их подавления.

- В данных в спектре инвариантных масс $M_{3\pi}$ было выявлено явное искажение по сравнению с Монте-Карло моделированием. Это искажение было удовлетворительно описано в рамках гипотезы интерференции между распадами $J/\psi \to \phi \eta$ и $J/\psi \to \omega \eta$.
- Выполнена неполная оценка систематических погрешностей и поэтому полученная систематическая погрешность заведомо ниже реальной. Показано, что в данном анализе даже заниженная систематическая погрешность превосходит статистическую, и, следовательно, увеличение статистики данных не позволит существенно улучшить оценку ошибки.
- Измерена относительная ширина распада:

$$Br(J/\psi \to \phi \eta) = (7.22 \pm 0.39_{stat} \pm 0.48_{syst}) \cdot 10^{-4}$$
 - результат $Br(J/\psi \to \phi \eta) = (7.5 \pm 0.8) \cdot 10^{-4}$ - из PDG

На основе этих результатов можно сделать вывод, что исследуемый канал распада $\phi \to \pi^+\pi^-\pi^0$ не имеет преимуществ перед каналом $\phi \to K^+K^-$

Спасибо за внимание!