

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА» ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Определение времени и координат взаимодействий частиц с помощью оптической системы в ближнем жидкоаргоновом детекторе эксперимента DUNE

Выполнил студент 409 группы Ленский Петр Игоревич Научный руководитель: доктор физ.-мат. наук Наумов Дмитрий Вадимович Научный консультант: канд. физ.-мат. наук Чуканов Артём Владиславович

Введение

- Изучение нейтринных осцилляций необходимо для определения параметров расширенной Стандартной модели физики элементарных частиц.
- Если нейтрино частицы Дирака и существует только три аромата (флэйвора) нейтрино, вероятность нейтринных осцилляций определяется семью параметрами: тремя углами смешивания, фазой нарушения СРинвариантности, расщеплениями и иерархией масс нейтрино.
- На сегодняшний день остаются неизвестными следующие параметры:
 - октант, в котором лежит угол θ_{23} ;
 - фаза нарушения СР-инвариантности δ_{CP} ;
 - иерархия масс нейтрино (знак Δm_{31}^2).
- Основными задачами эксперимента DUNE являются измерение неизвестных и уточнение измеренных параметров нейтринных осцилляций.

Цель и задачи работы

Цель работы — моделирование отклика оптической системы ближнего жидкоаргонового детектора эксперимента DUNE на прохождение мюонов через камеру детектора, определение координат проходящих через камеру мюонов с помощью данной системы.

Задачи работы:

- ознакомление с устройством эксперимента DUNE;
- обработка калибровочных данных для получения параметров сцинтилляции жидкого аргона;
- моделирование в Geant4 отклика оптической системы ближнего жидкоаргонового детектора на прохождение мюонов через модуль детектора;
- оценка эффективности регистрации фотонов оптической системой и определение пространственного разрешения данной системы.

Смешивание нейтрино и осцилляционные параметры

Связь флэйворных и массовых состояний нейтрино: $|v_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |v_{i}\rangle$ Матрица смешивания:

$$U_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$v_{\mu} \rightarrow v_{\mu}, v_{\mu} \rightarrow v_{\tau}$$
$$|\Delta m_{32}^2| = |m_3^2 - m_2^2|$$
$$\exists k \text{сперименты} \\ \text{атмосферные и с } \\ \text{длинной базой} \end{pmatrix} \overset{v_e \rightarrow v_e, v_{\mu} \rightarrow v_e}{\Delta m_{31}^2} \simeq \Delta m_{32}^2$$
$$\exists k \text{сперименты} \\ \text{солнечныe} u \\ \text{солнevertequark constraints} \\ \text{солnevertequark constraints} \\ \text{соnevertequark cons$$

Иерархия масс нейтрино

• Помимо абсолютных значений расщеплений масс нейтрино необходимо знать иерархию масс нейтрино, то есть знак Δm_{31}^2 .

Эксперимент DUNE

- Длинная база осцилляций (1285 км).
- Большие объёмы рабочих областей детекторов. Дальний детектор будет содержать 40 кт ⁴⁰Ar.
- Широкий диапазон энергий нейтрино (0,5 – 8 ГэВ).

Deep Underground Neutrino Experiment Sanford Underground Fermilab Research Facility 100% muon neutrinos ντ 0 km 1400 600 400 200 1200 1000 800 Probability of detecting electron, muon and tau neutrinos

Дальний детекторный комплекс

Однофазная технология (только жидкий аргон)

Двухфазная технология (жидкий и газообразный аргон)

Ближний детекторный комплекс

Ближний комплекс состоит из трёх детекторов:

- ND-LAr жидкоаргоновая ВПК;
- ND-GAr аргоновый газовый детектор, измеряет импульс и знак заряда вылетающих из ND-LAr частиц;
- SAND система мониторинга пучка на оси.

Первые два детектора образуют подвижный модуль DUNE-Prism и могут служить для внеосевых измерений для предсказания состава пучка в дальнем детекторе.

Ближний жидкоаргоновый детектор (ND-LAr)

 ND-LAr представляет собой массив из 35 модулей (5 в длину и 7 в ширину), каждый из которых разделён катодной плоскостью на две оптически изолированные ВПК.

Ближний жидкоаргоновый детектор (ND-LAr)

ND-LAr. Отдельный модуль

сцинтиллятора в Geant4

При обработке калибровочных данных были получены следующие параметры сцинтиллятора:

- времена высвечивания «быстрой» (66,4 нс) и «медленной» (735,8 нс) компонент;
- доля фотонов в «быстрой» компоненте (0,171).

Световыход (число фотонов на 1 МэВ выделенной энергии) в жидком аргоне при величине поля 500 В/см составляет 24000 (arXiv: 2203.16134 [physics.ins-det]).

$$I = A \exp igg(- rac{t}{ au_f} igg) + B \exp igg(- rac{t}{ au_s} igg) \, .$$

Waveform

пролетающий через камеру детектора мюон

Оценка эффективности регистрации фотонов оптической системой ND-LAr

- Отбирались события в зарядовой системе прототипа ND-LAr "Module O";
- в Geant4 моделировались идентичные события в камере детектора;
- при моделировании подсчитывалось количество фотонов, попавших на поверхность каждого из детекторов оптической системы;
- эффективность каждого из детекторов оценивалась как отношение количества фотонов, зарегистрированных детектором оптической системы прототипа, к количеству фотонов, попавших на поверхность детектора при моделировании соответствующего события.

Отбор событий в зарядовой системе прототипа "Module O"

- Отбирались одночастичные события с наиболее прямыми треками;
- для дальнейшего моделирования данные события, представляющие собой набор точек в трёхмерном пространстве, аппроксимировались прямой линией, откуда находилась начальная точка трека и его направляющий вектор.

Пример отобранного события

⁷ Обработка отобранных событий

- Было отобрано и обработано около 100 событий в зарядовой системе прототипа детектора.
- Для каждого из них в Geant4 моделировались мюонные треки с такой же начальной точкой и направляющим вектором.

Отобранное событие, аппроксимированное прямой в пространстве

Определение эффективности регистрации фотонов

Распределение числа фотонов, попавших на поверхность одного из детекторов оптической системы

Сигнал в канале АЦП, соответствующем этому детектору в камере прототипа

Эффективности регистрации фотонов детекторами оптической системы

LCM

Определение координат мюонов с помощью оптической системы

- Моделировались мюонные треки, направленные под малыми углами к оси пучка.
- Строились распределения интегральных сигналов с детекторов оптической системы для ближней и дальней стенок камеры.
- Столбцу гистограммы с максимальной амплитудой сопоставлялась у-координата центра соответствующего ему детектора, после чего к ней вносилась поправка с учётом амплитуд в соседних столбцах.
- Полученная таким образом координата считалась координатой мюона, прошедшего через стенку детектора.

дальней стенки камеры

Определение пространственного разрешения оптической системы

Для определения пространственного разрешения оптической системы ближнего жидкоаргонового детектора эксперимента DUNE было построено распределение числа событий в зависимости от разности зарегистрированной и фактической у-координат мюона.

Пространственное разрешение оптической системы составило (23,3 ± 1,4) мм.

Требования к пространственному разрешению оптической системы

- За один сброс пучка, длящийся около 9,6 мкс, ожидается около 80 событий в ближнем детекторе.
- Скорость дрейфа электронов в объёме ВПК равна 1,648 мм/мкс, а максимальная длина дрейфа – 300 мм, то есть события в зарядовой системе перекрываются. Так как оптическая система формирует триггеры для зарядовой, необходимо разделять события с её помощью.
- Ближний детектор в поперечном сечении разделён на 14 оптически изолированных ВПК размерами 0,3×1,2 м (по х и у соответственно).
- В предположении о равномерности распределения событий по площади поперечного сечения детектора, в каждой ВПК ожидается около 6 событий, то есть для их разделения необходимо разрешение оптической системы не хуже 200 мм по оси у.

Выводы

- В ходе работы с помощью программного пакета ROOT были обработаны калибровочные данные, полученные с прототипа жидкоаргоновой BПК "Module O", что позволило задать корректные параметры сцинтилляции жидкого аргона для моделирования отклика оптической системы детектора.
- Для оценки эффективности регистрации оптических фотонов детекторами оптической системы были отобраны и обработаны мюонные события, зарегистрированные прототипом детектора, после чего идентичные им события были смоделированы с помощью программного пакета Geant4. Сравнение модельных и реальных данных показало, что эффективности регистрации фотонов детекторами LCM и ArCLight составляют (0, 28 ± 0, 11)% и (0, 028 ± 0, 015)%
- Для оценки пространственного разрешения системы были смоделированы и обработаны мюонные треки, пересекающие обе плоскости камеры детектора, на которых расположены детекторы оптической системы. При этом пространственное разрешение оптической системы составило (23, 3 ± 1, 4) мм, что позволяет разделять события в оптической системе и однозначно сопоставлять им события в зарядовой системе.

Заключение

- Эксперимент DUNE крупный международный проект, задачами которого являются измерение иерархии масс нейтрино, фазы CP-нарушения в лептонном секторе на уровне значимости выше 5σ, а также уточнение значений остальных параметров нейтринных осцилляций.
- Немаловажную роль в данном проекте играет ОИЯИ, так как занимается производством детекторов LCM для оптической системы ближнего детектора.
- Данная работа может быть полезна при калибровке детекторов оптической системы и при оптимизации их конструкции.
- В дальнейшем в рамках данной темы планируется уточнение значения эффективностей детекторов LCM и ArCLight.

Спасибо за внимание!

