Оценка чувствительности эксперимента JUNO к параметрам нейтринных осцилляций с помощью атмосферных нейтрино

Выступающий: Н.С. Бессонов Научный руководитель: д.ф.-м.н. А.Г. Ольшевский Научный консультант: к.ф.-м.н. М.О. Гончар

Физический Факультет МГУ им. М.В. Ломоносова

Москва. 2024

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 1 из 26

Нейтринные осцилляции

PMNS-матрица:

$$\begin{pmatrix} V_{e1}^* & V_{e2}^* & V_{e3}^* \\ V_{\mu1}^* & V_{\mu2}^* & V_{\mu3}^* \\ V_{\tau1}^* & V_{\tau2}^* & V_{\tau3}^* \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Параметры, от которых зависят осцилляции:

- Разности квадратов масс: Δm²₂₁, Δm²₃₂ (знак Δm²₃₂ — иерархия масс).
- Углы смешивания: θ₁₂, θ₁₃, θ₂₃, δ_{CP}.

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 2 из 26

Цели и задачи

Цель работы: провести оценку чувствительности эксперимента JUNO к иерархии масс, октанту угла θ_{23} и параметрам осцилляций $|\Delta m_{32}^2|$, $\sin^2 \theta_{23}$ и $\delta_{\rm CP}$ с помощью атмосферных нейтрино.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Цели и задачи

Задачи исследования:

- Ознакомиться с литературой и публикациями по теме.
- Написать программу расчёта ожидаемого числа событий нейтрино в GNA.
- Провести статистический анализ для определения чувствительности к параметрам осцилляций.
- Интерпретация полученных результатов.

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Атмосферные нейтрино

- Рождаются при взаимодействии космических лучей с веществом атмосферы Земли.
- При интересующих нас энергиях доминируют π/K -нейтрино (реакции записаны в таблице).

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Эксперимент JUNO

- Основная цель эксперимента определение иерархии масс нейтрино.
- 20 килотонн жидкого сцинтиллятора.
- Радиус 17 метров, расположен в 700 метрах под землёй.

Схема эксперимента

Местоположение детектора

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Стр. 6 из 26

Global Neutrino Analysis (GNA)

Global Neutrino Analysis программный комплекс для проведения анализа данных нейтринных экспериментов.

- Функциитрансформации для всех расчётов, реализованные с помощью C++ и CERN ROOT.
- Графовая структура.
 Объединение
 трансформаций в граф
 производится с
 помощью языка Python.
- Функции для проведения статистического анализа.

Модель эксперимента JUNO в GNA

$$N_{ftc} = 2\pi MT \sum_{l=e,\mu} \int_{E_i}^{E_{i+1}} \mathrm{d}E \int_{\cos heta_j}^{\cos heta_{j+1}} \mathrm{d}\cos(heta) \sigma_{ftc}(E) imes$$

$$\times \Phi^0_{lt}(E,\cos\theta)P_{lft}(E,\cos\theta)$$

- Интервал энергий [200 МэВ, 20 ГэВ] разбивается на 399 интервалов $[E_i, E_{i+1}]$, интервал косинусов зенитного угла [-1, 1] разбивается на 100 интервалов $[\cos \theta_i, \cos \theta_{i+1}]$.
- Индексы: I флейвор в начальном состоянии, f в конечном, t тип частицы, с — ток.
- *M* масса жидкого сцинтиллятора, *T* время экспозиции, *σ* сечение взаимодействия, Φ⁰ — поток до осцилляций, *P* — вероятности осцилляций.

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Расчёт спектра в идеальном случае

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 9 из 26

▲ロト ▲標 ト ▲目 ト ▲目 シタの

Гистограммы ожидаемого числа событий (NO)

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 10 из 26

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ めのの

Расчёт итогового спектра (на примере электронных нейтрино)

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 11 из 26

= 200

(a)

Учёт PID

Пусть $M_{\alpha\beta}$ — матрица запутывания, N^{β} — спектр без учёта PID. Тогда спектр с учётом PID: $\widetilde{N}^{\alpha} = \sum_{\beta} N^{\beta} M_{\beta\alpha}$.

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Стр. 12 из 26

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへの

Ребиннинг

Для всех биннингов кроме fine,

 $\cos\theta: [-1,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0].$ Энергия в единицах ГэВ.

- fine. E: logspace(0.2, 20, 400); cos θ: linspace(-1, 1, 101)
- B1. E:

 ν_{e} : [0.2, 1.65, 2.0, 2.4, 2.95, 3.6, 4.7, 6.3, 9.0, 20.0]

 $\bar{\nu}_e$: [0.2, 1.15, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.95, 2.1, 2.3, 2.5, 2.7, 3.0, 3.4, 3.9, 4.6, 5.7, 7.7, 20.0]

 $\nu_{\mu}: [0.2, 1.05, 1.25, 1.4, 1.55, 1.7, 1.9, 2.1, 2.3, 2.6, 3.0, 3.5, 4.2, 5.2, 20.0]$ $\bar{\nu}_{\mu}: [0.2, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.9, 2.1, 2.3, 2.6, 3.0, 3.5, 20.0]$

- B2. E: [0.2, 0.6, 0.8, 1.0, 1.35, 1.75, 2.2, 3.0, 4.6, 20.0]
- B3. E:

 $\begin{array}{l} \nu_e: [0.2, 0.6, 0.8, 1.0, 1.65, 2.0, 2.4, 2.95, 3.6, 4.7, 6.3, 9.0, 20.0] \\ \bar{\nu}_e: [0.2, 0.6, 0.8, 1.15, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.95, 2.1, 2.3, 2.5, 2.7, 3.0, 3.4, 3.9, 4.6, 5.7, 7.7, 20.0] \\ \nu_\mu: [0.2, 0.6, 0.8, 1.05, 1.25, 1.4, 1.55, 1.7, 1.9, 2.1, 2.3, 2.6, 3.0, 3.5, 4.2, 5.2, 20.0] \\ \bar{\nu}_\mu: [0.2, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.9, 2.1, 2.3, 2.6, 3.0, 3.5, 4.4, 5.2, 20.0] \end{array}$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 13 из 26

Метод максимального правдоподобия

Функция правдоподобия:

$$P(\theta,\eta) = \frac{P(x|\mu(\theta,\eta))}{P(x|x)} N(\eta|\eta_0) = \prod_{i=1}^{N} \left[\left(\frac{\mu_i}{x_i}\right)^{x_i} e^{x_i - \mu_i} \right] \frac{1}{\sqrt{(2\pi\sigma_j^2)^K}} \prod_{j=1}^{K} e^{-\frac{(\eta_j - \eta_{j,0})^2}{2\sigma_j^2}}$$

Максимизация функции правдоподобия равносильна минимизации функции $\chi^2 = -2 \ln P(\theta, \eta)$. Две используемые статистики (для случаев с учётом систематики и без учёта):

$$\chi^{2}_{\rm stat.only} = 2 \sum_{i=1}^{N_{E}} \sum_{j=1}^{N_{\cos}\theta} \left[N_{ij} \ln \left(\frac{N_{ij}}{T_{ij}} \right) + T_{ij} - N_{ij} \right]$$

$$\chi^{2}_{\text{stat.+syst.}} = 2\sum_{i=1}^{N_{E}} \sum_{j=1}^{N_{\cos}\theta} \left[N_{ij} \ln \left(\frac{N_{ij}}{\widetilde{T}_{ij}} \right) + \widetilde{T}_{ij} - N_{ij} \right] + \sum_{k=1}^{K} \xi^{2}_{k}$$

$$\xi_k = \frac{\eta_k - \eta_{k,0}}{\sigma_k}, \, \widetilde{T}_{ij} = T_{ij} \left(1 + \sum_{k=1}^K \pi_{ij}^k \xi_k \right)$$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 14 из 26

Учёт систематики

Таблица параметров, учитывающих систематические неопределённости потоков и сечений взаимодействия

Неопределённости потока	σ	π_{ij}
Общая нормировка	20%	20%
Зависимость от энергии	5%	$5\% \times \ln \frac{E_{\nu}}{E_0}$
Зависимость от зенитного угла	5%	$5\% \times \cos \theta $
$ u_{\mu} + ar{ u}_{\mu}/ u_e + ar{ u}_e$	2%	$\pm 1\%$
$ u_{\mu}/ar{ u}_{\mu}$	5%	$\pm 2.5\%$
$ u_e/ar u_e$	5%	$\pm 2.5\%$
Неопределённости сечения	σ	π_{ij}
Общая нормировка	10%	10%

Отношение потоков при изменении параметров зависимости от энергии и зенитного угла на 1σ

(日) (周) (三) (三) (三) (三) (○) (○)

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 15 из 26

Чувствительность к иерархии масс

Зависимости вероятностей осцилляций от энергии нейтрино и зенитного угла при нормальной (слева) и обратной (справа) иерархии. Прямоугольником выделена область, ответственная за чувствительность JUNO к иерархии масс.

$$\begin{array}{c} 0.00 \\ -0.25 \\ -0.05 \\ -1.00 \\ 10^{-1} \\ 10^{0} \\ E_{i} \text{ in GeV} \end{array} \qquad \begin{array}{c} 1.00 \\ 0.07 \\ -0.25 \\ 0.00 \\ -1.00 \\ 10^{-1} \\ 10^{0} \\ 10^{-1} \\ 10^{0} \\ 10^{-1} \\ E_{i} \text{ in GeV} \end{array} \qquad \begin{array}{c} 1.00 \\ 0.00 \\ 0.75 \\ -0.25 \\ 0.00 \\ -1.00 \\ 10^{-1} \\ 10^{0} \\ 10^{-1} \\ E_{i} \text{ in GeV} \end{array} \qquad \begin{array}{c} 1.00 \\ 0.75 \\ 0.25 \\ 0.00 \\ -1.00 \\ 10^{-1} \\ E_{i} \text{ in GeV} \end{array}$$

$$P(\nu_e \rightarrow \nu_\mu)$$
, NO

 $P(\nu_{\mu} \rightarrow \nu_{\mu})$, NO

$$P(
u_{\mu}
ightarrow
u_{\mu})$$
, IO

 $P(\nu_e \rightarrow \nu_\mu)$, IO

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 16 из 26

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Чувствительность к иерархии масс

Разности чисел событий между нормальной и обратной иерархиями для 4-х каналов: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu$.

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 17 из 26

Чувствительность к иерархии масс: влияние PID

NO:
$$N\sigma = \sqrt{\min \chi_{IO}^2 - \min \chi_{NO}^2}$$
, IO: $N\sigma = \sqrt{\min \chi_{NO}^2 - \min \chi_{IO}^2}$

Зависимость чувствительности JUNO к иерархии масс от времени работы эксперимента (применяются все эффекты детектора). Параметры осцилляций, использующиеся в подгонке: $(sin^2\theta_{23}, \Delta m_{32}^2, \delta_{CP})$.

- Рассмотрены варианты NO и IO для случаев: точной идентификации частиц, стратегии PID 3+2 и PID 5.
- Для T = 6 лет чувствительность, оценённая без учёта и с учетом PID, уменьшается с ~5σ до ~2σ.
- PID 5 лучше, чем PID 3+2.
- Алгоритмы PID существенно влияют на чувствительность.

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Стр. 18 из 26

Чувствительность к иерархии масс: влияние биннинга

Зависимость чувствительности JUNO к иерархии масс от времени работы эксперимента (применены все эффекты детектора и PID 5).

- Рассмотрены варианты NO и IO для случаев: "точный" (fine) биннинг, B1, B2 и B3.
- Ребиннинг значительно ухудшает чувствительность.
- Нужно использовать безбиновую функцию правдоподобия для обработки данных.

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 19 из 26

Чувствительность к иерархии масс: влияние систематики

Зависимость чувствительности JUNO к иерархии масс от времени работы эксперимента (применены все эффекты детектора и PID 5).

- Рассмотрены варианты NO и IO для случаев: "точного" биннинга и ребиннинга B3 с учётом и без учёта систематических неопределённостей потоков и сечений.
- Используемые параметры систематики практически не влияют на чувствительность.
- Итоговая
 чувствительность около 2σ за 6 лет.

Чувствительность к параметрам Δm^2_{32} и $\sin^2 heta_{23}$

- Время набора данных — 10 лет.
- Профили χ^2 и контуры показывают ограничения на параметры осцилляций.
- На графике с контурами также отмечены ошибки из PDG.
- JUNO не сможет определить параметры Δm_{32}^2 и $\sin^2 \theta_{23}$ с точностью большей, чем они уже известны.
- Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

ロト < 個ト < 目ト < 目ト < 目本 のへの

Стр. 21 из 26

Москва, 2024

Чувствительность к октанту угла $heta_{23}$

$$N\sigma = \sqrt{\min_{ ext{other octant}} \chi^2(\sin^2 heta_{23}) - \min\chi^2(\sin^2 heta_{23}^{true})}$$

Зависимость уровня достоверности, на котором можно исключить принадлежность угла θ_{23} другому октанту, от истинных значений sin² θ_{23} .

- Также на графике отмечены значения из PDG 2023 с ошибками на уровне 1*о*.
- Время набора данных 10 лет.
- При значениях параметра $\sin^2 \theta_{23}$ в интервале $\pm 1\sigma$ из PDG 2023, чувствительность к октанту угла θ_{23} составляет от $\sim 0.2\sigma$ до $\sim 1.2\sigma$.

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 22 из 26

Чувствительность к СР-нарушению в лептонном секторе

$$N\sigma = \min\left(\sqrt{\min\chi^2(0) - \min\chi^2(\delta_{CP})}, \sqrt{\min\chi^2(\pi) - \min\chi^2(\delta_{CP})}\right)$$

Зависимость уровня достоверности, на котором можно исключить гипотезу нарушения СР-инвариантности, от истинных значений $\delta_{\rm CP}$.

- Отсутствию нарушения СР-инвариантности соответствуют два значения δ_{CP}: 0 и π.
- Время набора данных 10 лет.
- Чувствительность к нарушению
 СР-инвариантности в лептонном секторе составит не более ~1.2σ за 10 лет.

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 23 из 26

Выводы и перспективы

Выводы:

- Был написан модуль для анализа атмосферных нейтрино в JUNO в программном комплексе GNA.
- Была проведена оценка чувствительности эксперимента JUNO к параметрам осцилляций.
- JUNO обладает чувствительностью к параметрам осцилляций $\sin^2 \theta_{23}$ и Δm^2_{32} , однако не сможет определить их с точностью большей, чем они уже известны.
- Чувствительность к нарушению СР-инвариантности в лептонном секторе составит не более ~1.2 за 10 лет.
- При значениях параметра $\sin^2 \theta_{23}$ в интервале $\pm 1\sigma$ из PDG 2023, чувствительность к октанту угла θ_{23} составляет от $\sim 0.2\sigma$ до $\sim 1.2\sigma$.
- С помощью одних только атмосферных нейтрино JUNO сможет определить иерархию масс с достоверностью ~2σ за 6 лет.

Выводы и перспективы

Перспективы:

- В качестве задач на будущее, нужно добавить неучтённые эффекты (тау-нейтрино, неопределённость в разрешении, осцилляции в атмосфере).
- Также планируется проведение совместного (атмосферные + реакторные нейтрино) анализа чувствительности JUNO к иерархии масс, причём ожидается чувствительность $n_{\rm joint} > \sqrt{n_{\rm atm}^2 + n_{\rm react}^2}$.

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Стр. 25 из 26

Спасибо за внимание!

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 26 из 26

◆□▶ ◆圖▶ ◆目▶ ◆目▶ ●目目 のへ⊙

Приложение

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 27 из 26

Входные данные: потоки (HKKM14, JUNO solmin)

70.62

62.88

55.15

47.41

39.68

31.95

24.21

16.48

8.74

160.9

144.0

127.1

110.2

93.3

76.3

59.4

42.5

- 25.6

イロト イヨト イヨト

101

101

Москва, 2024

Стр. 28 из 26

ELE SOC

Атмосферные нейтрино

Поток мюонных нейтри- Отношение потоков но, умноженный на *E*² нейтрино

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Стр. 29 из 26

Используемые параметры осцилляций (PDG 2023)

$$\begin{split} & \sin^2(\theta_{12}) = 0.307 \pm 0.013 \\ & \Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ & \sin^2(\theta_{23}) = 0.534^{+0.021}_{-0.024} \quad (\text{Inverted order}) \\ & \sin^2(\theta_{23}) = 0.547^{+0.018}_{-0.024} \quad (\text{Normal order}) \\ & \Delta m_{32}^2 = (-2.519 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad (\text{Inverted order}) \\ & \Delta m_{32}^2 = (2.437 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad (\text{Normal order}) \\ & \sin^2(\theta_{13}) = (2.20 \pm 0.07) \times 10^{-2} \\ & \delta, \ CP \ \text{violating phase} = 1.23 \pm 0.21 \ \pi \ \text{rad} \quad (\text{S} = 1.3) \end{split}$$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Стр. 30 из 26

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Осцилляции в веществе Земли (NO)

 $P(\nu_i \rightarrow \nu_f)$

Слева $\nu_i = \nu_e$, справа $\nu_i = \nu_\mu$. ν_f сверху вниз - ν_e , ν_μ и ν_τ соответственно

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

■ = ∽ へ ペ Стр. 31 из 26

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Расчитанные гистограммы спектров

Без осцилляций

С осцилляциями

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 32 из 26

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへの

Тактики предварительной эстраполяции потоков

МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 33 из 26

Тактики предварительной эстраполяции потоков

2 тактики:

- Константная экстраполяция
- Линейная экстраполяция

Перенормировка потоков не проводилась, поскольку различие всего около 1% и нормировки потоков учтены как систематики

Линейная

Константная

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 34 из 26

Входные данные: сечения (Genie)

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 35 из 26

Сравнение OscProb и Magnus

- Различие в ожидаемом числе событий между OscProb и Magnus - менее 1%
- OscProb примерно в ~10 раз быстрее, поэтому далее используется этот алгоритм

e μ particle 6385 9371 antiparticle 2061 3387

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 36 из 26

Формула для расчёта матрицы размытия

$$C_{kj} = \frac{1}{\Delta_j^a} \frac{1}{\sqrt{2\pi\sigma_j^2}} \int_{b_k}^{b_{k+1}} db \int_{a_j}^{a_{j+1}} da e^{-\frac{(a-b)^2}{2\sigma_j^2}} =$$

$$= \frac{1}{2\Delta_j^a} \left[(b_{k+1} - a_j) \operatorname{erf} \left(\frac{b_{k+1} - a_j}{\sqrt{2\sigma_j^2}} \right) - (b_k - a_j) \operatorname{erf} \left(\frac{b_k - a_j}{\sqrt{2\sigma_j^2}} \right) - (b_{k+1} - a_{j+1}) \operatorname{erf} \left(\frac{b_{k+1} - a_{j+1}}{\sqrt{2\sigma_j^2}} \right) + (b_k - a_{j+1}) \operatorname{erf} \left(\frac{b_k - a_{j+1}}{\sqrt{2\sigma_j^2}} \right) \right] +$$

$$+ \frac{\sigma_j}{\sqrt{2\pi}\Delta_j^a} \left[e^{-\frac{(b_{k+1} - a_j)^2}{2\sigma_j^2}} - e^{-\frac{(b_k - a_j)^2}{2\sigma_j^2}} - e^{-\frac{(b_{k+1} - a_{j+1})^2}{2\sigma_j^2}} + e^{-\frac{(b_k - a_{j+1})^2}{2\sigma_j^2}} \right]$$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 37 из 26

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Матрицы размытия по энергии

 $\widetilde{H} = C_E H$

Матрица размытия для электронного флейвора

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 38 из 26

Размытие по углу

Для фиксированной энергии: $\widetilde{H} = HC_{\cos\theta}^{T}$

- Переход от биннинга по косинусу к биннингу по углу (arccos)
- Зеркальное отражение гистограммы (чтобы границы бинов возрастали)
- Переход к расширенной гистограмме (чтобы не терялись события)
- Построение матрицы размытия для расширенной гистограммы
- Размытие
- Суммирование событий в бинах по углам, соответствующих одинаковым косинусам, и переход к гистограмме с бинами по косинусу
- Снова зеркальное отражение гистограммы

Всё это можно провести с помощью перемножения матриц:

$$\widetilde{H} = HC_{\cos\theta}^{T}, C_{\cos\theta} = (MA\widetilde{C}_{\cos\theta}^{T}LM)^{T}$$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Размытие по углу

$$\widetilde{H} = HMA\widetilde{C}_{\cos heta}^{T}LM$$

Размерности матриц:

$$M(N \times N), A(N \times 3N), \widetilde{C}_{\cos\theta}(3N \times 3N), L(3N \times N)$$

Формула для размытой по углу гистограммы:

$$\widetilde{H} = HC_{\cos\theta}^{T}$$

Матрица размытия:

$$C_{\cos\theta} = (MA\widetilde{C}_{\cos\theta}^{T}LM)^{T}$$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 40 из 26

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Матрицы А, L и М

Сверху: слева - матрица A (расширение гистограммы), справа - матрица M (зеркальное отражение); снизу - транспонированная матрица L (суммирует события в соответствующих бинах и сворачивает гистограмму к исходному размеру)

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Стр. 41 из 26

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のの⊙

Матрицы размытия по косинусу зенитного угла

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 42 из 26

Учёт эффектов детектора: разрешение по энергии и по углу

JUNO-docDB-11086

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

≣ ▶ ⊒|≡ •∕) ۹.(~ Стр. 43 из 26

A B F A B F

- 4 🗗 ▶

Эффекты детектора: размытие гистограмм

Размытие по энергии: $\tilde{H} = C_E H$. Размытие по косинусу зенитного угла при фиксированной энергии: $\tilde{H} = HC_{\cos\theta}^{T}, C_{\cos\theta} = (MA\tilde{C}_{\cos\theta}^{T}LM)^{T}$ (подробнее — в приложении). Матрица размытия по энергии (для электронного флейвора, $\nu_e^{\rm CC}$). Матрица размытия по косинусу зенитного угла (E = 5 ГэВ, $\nu_e^{\rm CC}$).

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 44 из 26

Гистограммы после применения размытия по энергии

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 45 из 26

・ロト ・ 日 ・ モ ト ・ 日 ト ・ 日 ト ・ つ つ つ

Гистограммы после применения размытия по энергии и углу

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 46 из 26

Гистограммы после применения эффектов детектора и PID 5

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 47 из 26

Гистограммы после ребиннинга (ВЗ)

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 48 из 26

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Чувствительность к иерархии масс: вклад разных каналов

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Стр. 49 из 26

Чувствительность к иерархии масс: влияние эффектов детектора

NO:
$$N\sigma = \sqrt{\min \chi_{IO}^2 - \min \chi_{NO}^2}$$
, IO: $N\sigma = \sqrt{\min \chi_{NO}^2 - \min \chi_{IO}^2}$

Зависимость чувствительности JUNO к иерархии масс от времени работы эксперимента в случае точной идентификации частиц (эффекты PID и систематики потоков и сечений не применялись). Рассмотрены варианты NO и IO для случаев: без эффектов детектора, только размытие по энергии и размытие по энергии и углу. Для 6 летней работы JUNO чувствительность, оценённая без учёта и с учетом размытия, уменьшается с ~ 16σ до ~ 5σ .

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 50 из 26

Чувствительность к иерархии масс: вляиние downward-going нейтрино и событий NC

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 51 из 26

Чувствительность к параметру $\sin^2 heta_{23}$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 52 из 26

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Чувствительность к параметру Δm^2_{32}

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 53 из 26

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Контуры чувствительности к параметрам Δm^2_{32} и $\sin^2 heta_{23}$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 54 из 26

Чувствительность к параметрам Δm^2_{32} и $\sin^2 heta_{23}$

IO, 0.534	stat. only	stat. + syst.
fine	$0.534\substack{+0.051\\-0.077}$	$0.534\substack{+0.062\\-0.083}$
rebin	0.534+0.057	$0.534\substack{+0.072\\-0.089}$

IO, 2.519	stat. only	stat. + syst.
fine	$2.519\substack{+0.060\\-0.042}$	$2.519\substack{+0.060\\-0.042}$
rebin	$2.52\substack{+0.25\\-0.12}$	$2.52\substack{+0.25\\-0.12}$

NO, 0.547	stat. only	stat. + syst.
fine	$0.547\substack{+0.045\\-0.066}$	$0.547\substack{+0.055\\-0.064}$
rebin	$0.547\substack{+0.049\\-0.067}$	$0.547\substack{+0.066\\-0.070}$

NO, 2.437	stat. only	stat. + syst.
fine	2.437+0.068	2.437+0.068
rebin	$2.44_{-0.15}^{+0.25}$	$2.44^{+0.25}_{-0.15}$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 55 из 26

Чувствительность к параметру $\delta_{ m CP}$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

= 200 Стр. 56 из 26

3

Чувствительность к параметру $\delta_{ m CP}$

Н.С. Бессонов, Физический Факультет МГУ им. М.В. Ломоносова

Москва, 2024

Стр. 57 из 26

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □