Top quark physics on **Atlas**

Motivations:

- Constrain the mass of the SM Higgs boson (m_{H}) .
- excellent probe of EWSB
- possible existence of other massive particles
- top quark events the dominant at the TeV scale
- Calibration source for calorimetry at the LHC

Figure 1: Predicted Standard Model cross-section, versus quark mass, for pair production of heavy quarks at the LHC.

tt selection and event yields

According to the SM, $t \rightarrow Wb$ \Box 65.5% : $W \rightarrow jj$ or $W \rightarrow \tau v$

■ 44.4% : $t\bar{t} \rightarrow WWb\bar{b} \rightarrow (j\bar{j})(j\bar{j})b\bar{b}$

(3.7 million multi-jet events for an integrated luminosity of $10 \, fb^{-1}$)

15 GeV 7	.2	
		3 1/8
20 GeV 4	.3 .014	1 1/7
25 GeV 2	2.5 .005	6 1/6

tt selection and event yields

$\Box 34.5\% : W \rightarrow lv$

29.6% : the single lepton plus jets topology (2.5 million events for an integrated luminosity of 10 fb⁻¹)

4.9% : dilepton events (400 000 dilepton events for an integrated luminosity of $10 fb^{-1}$)

26.05.2006

Measurement of the top quark mass

$$m_t = 174.3 \pm 3.2 \pm 4.0 GeV$$

For SM: $\delta m_t \leq 2GeV$

For models beyond $\delta m_t \approx \pm 1 GeV$ SM:

Inclusive single lepton plus jets channel

$pp \rightarrow tt \rightarrow WWbb \rightarrow (lv)(jj)bb$

 $m_{\upsilon} = 0, E_T(\upsilon) = E_T^{miss}, m_{l\upsilon} = m_W, m_{jj} = m_W, m_{jjb} = m_{l\upsilon b} = m_t$

Process	$p_T^I > 20 \text{GeV}$ $E_T^{\text{miss}} > 20 \text{GeV}$	As before, plus N _{jet} ≥4	As before, plus N _{b-jet} ≥ 2	Events per 10 fb ⁻¹	
ft signal	64.7	21.2	5.0	126 000	
W+jets	47.9	0.1	0.002	1658	
Z+jets	15.0	0.05	0.002	232	
ww	53.6	0.5	0.006	10	
WZ	53.8	0.5	0.02	8	
ZZ	2.8	0.04	0.008	14	
Total background				1922	
S/B				65	

Inclusive single lepton plus jets channel

Inclusive single lepton plus jets channel

Systematic uncertainties on the measurement of m(top)

Systematic uncertainties on the measurement of m(top)

		Inclusive sample		
Source of uncertainty	Comment on method	∆ <i>m_t</i> (GeV) ∆ <i>R</i> =0.4 (0.7)	δ <i>m_t</i> (GeV) ∆ <i>R</i> =0.4 (0.7)	
Light jet energy scale	1% scale error	0.3 (0.3)	0.3 (0.3)	
b-jet energy scale	1% scale error	0.7 (0.7)	0.7 (0.7)	
b-quark fragmenta- tion	$(\epsilon_b{=}{-}0.006){-}(\epsilon_b{=}{-}0.0035)$	0.3 (0.3)	0.3 (0.3)	
Initial state radiation	ISR ON - ISR OFF	0.2 (1.3)	0.04 (0.3)	
Final state radiation	FSR ON - FSR OFF	10.2 (6.1)	2.0 (1.2)	
Background	-	0.2 (0.2)	0.2 (0.2)	

Top quark pair production

 $gg \rightarrow tt$ account 90% o the total tt production (gluongluon fusion process)

 $qq \rightarrow tt$

(qq annihilation)

 $\sigma(t\bar{t}) = 833 pb$

8 million pair in one year at the low luminosity

Search for tt resonances

Technicolor theories

Top quark decays and couplings

$\square \quad \mathsf{BR}(t \to WX)$

The SM, for which BR $(t \rightarrow WX) = 100\%$, predicts $R_{ll/l} = 2/9$

Existence of a charged H leads to a large BR $(t \rightarrow Hb)$

 $\Box \quad H \to \tau \upsilon$

Top quark Yukawa coupling

$$t \rightarrow l \upsilon b, t \rightarrow j j b, H \rightarrow b b$$

	SM Higgs mass			
Process	80 GeV	100 GeV	120 GeV	
<i>ttH</i> Signal	81	61	40	
Total Backgnd	145	150	127	
δy _t /y _t (stat.)	9.3%	11.9%	16.2%	

Top quark rare decays

□ Flavor Changing Neutral Currents (FCNC)

Suppressed within SM	FCNC Decay	BR in SM	BR in MSSM
Some extensions of SM	$t \rightarrow Zq$	≈ 10 ⁻¹²	≈ 10 ⁻⁸
allow $BR(t \rightarrow Zq) < 33\%$	$t \rightarrow \gamma q$	$\approx 10^{-12}$	≈ 10 ⁻⁸
	$t \rightarrow gq$	≈ 10 ⁻¹⁰	≈ 10 ⁻⁶

t -> Zq decay (tt -> (Wb) (Zq))

 $BR = 2.3 * 10^{-4}$

Table 18-8 Signal efficiency for the analysis of $t\bar{t} \rightarrow (Wb)(Zq)$ with $W \rightarrow j\bar{j}$ and $Z \rightarrow II$. Also listed are the numbers of accepted background events, assuming an integrated luminosity of 100 fb⁻¹.

Description	$t \rightarrow Zq$	Bkgnd
of Cut	Effic.(%)	Events
21, 4 jets	14.9	60394
m_Z cut	12.8	50973
m_W cut	5.4	14170
b-tag	2.5	1379
$t \to W^{\!+}b \text{ mass cut}$	0.6	90
m_{Zq} cut	0.4	2

 $\square BR = 1.1 * 10^{-4}$

Table 18-9 Signal efficiency for the analysis of $t\bar{t} \rightarrow (Wb)(Zq)$ with $W \rightarrow h$ and $Z \rightarrow II$. Also listed are the numbers of accepted background events, assuming an integrated luminosity of 100 fb⁻¹.

Description	$t \rightarrow Zq$	Bkgnd Events		
of Cut	Effic.(%)	Z+j	W+Z	ft
$3 \text{ lep; } p_{\mathrm{T}} > 20 \mathrm{GeV}$	43.2	945	1778	1858
$E_{\rm T}^{\rm miss} > 30 {\rm GeV}$	32.7	80	1252	1600
2 j; $p_{\mathrm{T}}{>}50~\mathrm{GeV}$	19.7	31	225	596
$m_Z \operatorname{cut}$	16.8	24	180	29
b-tag	8.2	10	14	10
m_{Zq} cut	6.1	0	2	5

Electroweak single top quark production

Electroweak single top quark production

- Cross Check the W-gluon fusion, Wt and W* crosssections separately.
- Different sensitivities to new physics.
 - W* channel is more sensitive to an additional heavy W' boson.
 - W-gluon fusion is more sensitive to modifications of the top quark's to the other SM particles.

Conclusions

- The mass of top quark will be measured with a precision of less than 2 GeV.
- The top quark Yukawa coupling can be measured with a precision of less than 10% for a Higgs mass of 100 GeV.
- Observation of tt spin correlations, predicted in SM and used to probe CP violation or anomalous couplings.
- Heavy resonances decays could be detected.
- □ Studying of rare decays.
- □ Study of electroweak single top production.