ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

КУРСОВАЯ РАБОТА

СОЗДАНИЕ УПРОЩЁННОЙ МОДЕЛИ СПЕКТРОМЕТРА ОЛВЭ ДЛЯ РАСЧЁТА ПО РЕГИСТРАЦИИ НЕЙТРОННОЙ КОМПОНЕНТЫ

Выполнил студент 409 группы Злобин Савелий Сергеевич

Научный руководитель

Подорожный Дмитрий Михайлович

Допущена к защите _____

Зав. кафедрой _____(подпись)

Москва 2025

Оглавление

Введение		
1	Галактические космические лучи	5
	1.1 Задачи и цели космического эксперимента ОЛВЭ	5
	1.2 Современные эксперименты	6
	1.2.1 CREAM	6
	1.2.2 PAMELA	6
	$1.2.3 \text{ AMS} - 02 \dots $	6
	1.2.4 НУКЛОН	6
	1.2.5 DAMPE	7
	1.2.6 TIGERISS, HERD, ОЛВЭ	7
	1.3 Выводы	7
2	Детектор ОЛВЭ	9
	2.1 Ионизационный калориметр	9
	2.1.1 Геометрия и структура	9
	2.1.2 Состав и материалы	9
	2.1.3 Соотношение материалов и масса	10
	2.1.4 Обоснование выбора материалов	11
	2.1.5 О способе регистрации тепловых нейтронов	11
	2.2 Система измерения заряда (СИЗ)	12
	2.3 Выводы	12
3	Моделирование в GEANT4	13
	3.1 Обзор GEANT4	13
	3.2 Упрощённая модель спектрометра ОЛВЭ	13
	3.2.1 Отличие модели от планируемого спектрометра ОЛВЭ	13
	3.2.2 Получившаяся модель детектора	14
	3.3 Моделирование поставленной задачи	14
	3.3.1 Формализация задачи	14

Л	[итература	19
4	Подведение итогов работы	19
	3.4 Выводы	15
	3.3.2 Результаты моделирования	15

Введение

Галактические космические лучи (ГКЛ) представляют собой высокоэнергетические частицы, главным образом протоны и ионы тяжёлых элементов, и, на уровне процентов и десятых долей процента, лептонную компоненту (электроны/позитроны), рождающиеся в самых катастрофических космических процессах. Феномен ГКЛ, несмотря на то, что носит название «лучи», расположение источников не определяет, ионы в значительной мере отклоняются магнитными полями Галактики, и в околоземном пространстве регистрируется их суммарный, для нашего рукава Галактики, поток [1]. Поэтому астрофизические процессы, в которых рождаются ГКЛ, могут изучаться по косвенным параметрам: энергетическим спектрам, зарядовым составом, анизотропии [2; 3]. Регистрация ГКЛ осуществляется двумя видами экспериментов: косвенными и прямыми. Косвенные эксперименты базируются на методике ШАЛ [4-6]. Суть её состоит в регистрации на поверхности Земли каскада (широкого атмосферного ливня, ШАЛ) рождённого первичной частицей при прохождении чрез атмосферу. К достоинствам этой методики можно отнести практически отсутствия энергетического порога при продвижении вверх по энергии, к недостаткам — достаточно высокий порог регистрации и невозможность определения химического состава ГКЛ. Для прямых исследований ГКЛ необходимо осуществить вынос за пределы атмосферы научную аппаратуру, которая должна регистрировать как заряд, так и энергию первичной частицы. Чрезвычайно важно в этих исследованиях выделение лептонной компоненты, которая несёт в себе информацию о ближнем галактическом пространстве Солнечной системы. Методики, которые используются в этих исследованиях имеют низкий энергетических порог, который лимитирован лишь физическими ограничениями — гелиосферным обрезанием от солнечного ветра. Однако продвижение вверх по энергетической шкале вызывает трудности. Энергетические спектры потоков ГКЛ падают по степенному закону, что требует выноса в Космос габаритной и массивной аппаратуры. Это ограничение остановило прямые исследования обильных ГКЛ на уровне 10¹⁴ эВ/частица для ядер, и определение энергетического электроного/позитроного спектра на уровне 10^{12} эВ.

Обсерватория Лучей Высоких Энергий (ОЛВЭ) эксперимент по прямой регистрации КЛ и предназначена для измерения потоков ядер КЛ ($1 \le Z \le 92$)

в диапазоне энергий 10¹²–10¹⁶ эВ с поэлементным разрешением и лептонной компоненты от 300 ГэВ до десятков ТэВ. ОЛВЭ по своим характеристикам — «прорывной» эксперимент, который на ближайшие десятилетия определит направления исследований в астрофизике частиц высоких энергий. Проект имеет высокий уровень технологической подготовленности в реализации с использованием отечественных технологий. Реализация эксперимента запланирована на период 2026-2035 гг [7].

Для улучшения качества разделения сигналов от протонов и лептонной компоненты КЛ в эксперименте ОЛВЭ предлагается использовать методику регистрации вторичных нейтронов, возникающих в ходе развития адронного каскада.

В данной работе предлагается создать упрощённую модель спектрометра ОЛВЭ для расчёта и анализа количества тепловых нейтронов, возникающих в детекторе при развитии адронного каскада от частиц с различными энергиями.

Основная цель — оценить спектр и временную эволюцию нейтронной компоненты. Для достижения этой цели решаются следующие задачи:

- Изучить конструкционные особенности и физические принципы работы спектрометра ОЛВЭ;
- 2. Построить упрощённую модель детектора в программе GEANT4;
- 3. Выполнить расчёт выхода нейтронов в модели и проанализировать их характеристики.

Глава 1. Галактические космические лучи

1.1 Задачи и цели космического эксперимента ОЛВЭ

Задачи ОЛВЭ определены так:

- Определить с поэлементный и спектральную форму потока частиц вплоть до максимально достижимых энергий 10¹⁶ эВ/частица, включая особенности «колена» ГКЛ в области 3 · 10¹⁵ эВ/частица;
- 2. Определение химического состава редких сверхтяжёлых ядер за пиком железа;
- Определить спектральную форму электрон/позитронного потока выше 10¹²
 эВ, поиск гипотетического обрыва спектра;
- Выделение из лептонной компоненты потока диффузного гамма-излучения при энергиях выше 3 · 10¹¹ эВ.

Цели поставленные перед данным экспериментом:

- 1. Определение причин феномена «колена» КЛ, ответ может находиться в точном определении химического состава ГКЛ в данной области;
- Рассчёт отношения вторичных ядер (по современным представлениям они генерируются, в основном, при прохождении первичных ядер через межзвёздную среду) к первичным, обильным, ядрам (генерируемым в источниках) при E₀ > 10¹¹ эВ/нуклон;
- 3. Изучение механизмов ускорения ГКЛ в сверхновых звёздах (Remnants, SNR), поиск альтернативных источников ГКЛ;
- Многократное увеличение банка событий по сверхтяжёлым ядрам ГКЛ, что несёт в себе информацию о нуклеосинтезе в современную космологическую эпоху;
- 5. Поиск анизотропии ГКЛ, которая может зависеть, например, от стохастического характера взрывов сверхновых;
- Определение электроного/позитроного спектра, определяемого близлежащими источниками;
- Получение спектра диффузного гамма-излучения, генерируемого во взаимодействиях КЛ с межзвёздной средой, при рассеянии электронов и обратном Комптон-эффекте, поиск новых источников.

1.2 Современные эксперименты

Для охвата широкого диапазона энергий и компонент КЛ реализовано несколько ключевых проектов:

1.2.1 CREAM

Серия стратосферных полётов для измерений тяжёлых ядер (С, О, Fe и др.) в диапазоне 10^{11} – 10^{14} эВ. Позволила впервые получить элементы вплоть до железа с хорошей статистикой [8].

1.2.2 PAMELA

Спутниковый прибор (2006–2016 гг.) для спектров протонов, антипротонов и лёгких ядер в диапазоне 50МэВ–2ТэВ [9].

1.2.3 AMS - 02

Магнитный спектрометр на МКС, работающий с 2011 г.,

Измеряет протоны и ядра от нескольких сотен МэВ до \simeq ТэВ с превосходным разделением заряда и массы, а также антиматерию (антипротоны, позитроны) с энергиями до $\simeq 500\Gamma$ эВ [10].

1.2.4 НУКЛОН

Космический спектрометр НУКЛОН на низкой околоземной орбите для прямых измерений ГКЛ в диапазоне вплоть до $5 \cdot 10^{14}$ эВ/частица. На сегодняшний день банк космического эксперимента НУКЛОН наиболее полон, и превышает суммарную статистику всех прямых экспериментов с аналогичными целями за предшествующие 50 лет [11].

Основные результаты:

- 1. Выявлено универсальное «колено» в спектре по магнитной жёсткости около 10 ТВ, выше которого спектры становятся мягче;
- 2. Спектры ядер С и О в области 200–300 ГВ выравниваются с данными AMS-02, что подтверждается результатами других экспериментов;
- 3. Отношение протонов к гелию с ростом жёсткости падает, но после «колена» выходит на постоянный уровень;
- 4. На участке перед «коленом» доля гелия растёт, указывая на возможный близкий источник, обогащённый Не;

- Впервые измерен спектр ядер никеля до ≃ 40 ТэВ: наклон 2.83 ± 0.09 (для Fe − 2.64 ± 0.02), что отражает особенности нуклеосинтеза и ускорения;
- 6. Отношения вторичных к первичным (B/C, N/O, subFe/Fe) при энергиях > 500 ГэВ/н выходят на плато, свидетельствуя о значимом вкладе вторичных ядер из источников.

1.2.5 DAMPE

Китайско-итальянский спутник (запущен 17 декабря 2015 г.) для прямых измерений электронов/позитронов, протонов и ядер [12].

- Диапазон энергий: 5 ГэВ−10 ТэВ для e⁻+e⁺, 100 ГэВ−100 ТэВ для p и ядер.
- Детекторы: пластиковый сцинтилятор PSD (антисовпад + Z), кремниевый трекер STK, BGO калориметр толщиной 32 X₀ (глубочайший в космосе) и нейтронный детектор NUD для разделения e/γ и адронов.
- Результаты: подтвердил «разрыв» спектра e⁻+e⁺ при ≃0,9 ТэВ, обнаружил излом p, He около жёсткости 10 ТВ, дал первые данные для тяжёлых ядер до ≈50 ТВ.

1.2.6 TIGERISS, HERD, ОЛВЭ

Перспективные космические эксперименты:

TIGERISS — детектор для ультратяжёлых ядер (Z > 30), размещённый на борту космического аппарата [13];

HERD – планируется на китайской орбитальной станции, охват до ПэВэнергий [14];

ОЛВЭ — орбитальный научный прибор на основе космического аппарата тяжёлого класса, предназначенный для исследования Галактики и Вселенной в целом путём регистрации и изучения первичного космического излучения высоких энергий в широком диапазоне энергий [7].

1.3 Выводы

Перечисленные эксперименты «нового поколения» 21 века получили ряд статистически обеспеченных данных об особенностях в химическом составе и

энергетических спектрах ГКЛ в области высоких энергий. Не вдаваясь в подробности, этот материал достаточно подробно представлен в обзоре [15], можно отметить, что сделанные в последнее время открытия не вписываются в «стандартную теорию» и начата работа по поиску их астрофизического объяснения. Остро не хватает экспериментальных данных с высокой методологической и статистической достоверностью с продвижением вверх по энергетической шкале. Заявленные параметры аппаратуры ОЛВЭ позволяют надеяться, что в случае удачного космического эксперимента будут решены наиболее актуальные экспериментальные задачи ГКЛ практически во всем энергетическом диапазоне ГКЛ.

Глава 2. Детектор ОЛВЭ

ОЛВЭ (Обсерватория Лучей Высоких Энергий) — орбитальный научный прибор на основе космического аппарата тяжёлого класса, предназначенный для исследования Галактики и Вселенной в целом путем регистрации и изучения первичного космического излучения высоких энергий в широком диапазоне энергий $10^{11} - 10^{16}$ эВ [7; 16].

2.1 Ионизационный калориметр

В качестве основного элемента научной аппаратуры Обсерватории Лучей Высокой Энергии (ОЛВЭ) используется ионизационный калориметр (ИК), предназначенный для регистрации как адронной, так и лептонной компонент КЛ в энергетическом диапазоне от 10^{12} до 10^{16} эВ. Ключевым требованием к конструкции калориметра является высокая точность восстановления энергетических спектров и изотопного состава, а также большой эффективный геометрический фактор.

2.1.1 Геометрия и структура

Для обеспечения изотропности регистрации частиц, поступающих со всех направлений, ИК выполнен в форме шестиугольной призмы, также такая форма обеспечивает хорошую компоновку с другими элементами научной аппаратуры и позволяет создать каркас, способный перенести нагрузки, которые испытывает любой аппарат при выводе на орбиту. Такая форма обеспечивает обзор в телесном угле, приближенном к 4π , и даёт равномерное покрытие углов наблюдения. Геометрические размеры калориметра в конфигурации на 10 тонн составляют:

- Диаметр вписанной окружности: $\approx 1,5$ м,
- Высота призмы: ≈ 1 м,
- Эффективный геометрический фактор:

$$\Omega_{\rm eff} \approx 12 \,\,{\rm M}^2 \cdot {\rm cp}$$

2.1.2 Состав и материалы

ИК состоит из двух основных компонентов: поглотителя и активного материала.

2.1.2.1 Поглотитель

- Материал: сплав вольфрам-медь-никель (ВНМ 5-3),
- Состав (по массе): W 92%, Ni 5%, Cu 3%,
- Плотность:

$$\rho_{\text{сплава}} \approx 16, 2 \text{ г/см}^3,$$

- Толщина одной пластины: 2 мм (1 каскадная единица).
- 2.1.2.2 Активный материал
 - Материал: пластиковый сцинтиллятор на основе полистирола,
 - Плотность:

$$\rho_{\text{сцинтиллятора}} \approx 1,0 \, \text{г/см}^3,$$

- Структура слоя: три слоя сцинтилляционных стрипов шириной 25 мм, высотой 8 мм,
- Углы ориентации: 0°, 60°, 120°
- Светосбор: через встроенные оптоволокна.
- 2.1.2.3 Композиционная структура

$$\rho_{\rm средняя} \approx 5,6 \ г/{\rm cm}^3$$

2.1.3 Соотношение материалов и масса

Оптимальное соотношение массы материалов:

- 1. Вольфрамовый сплав: ~7200 кг (примерно 90%),
- 2. Полистирол и оптика: $\simeq 800$ кг (примерно 10%),
- 3. Прочие конструктивные элементы: $\simeq 1000$ кг.

Полная масса калориметра:

$$M_{\rm ИK} \approx 10\ 000$$
 кг.

2.1.4 Обоснование выбора материалов

Комбинация плотного металлического поглотителя и лёгкого сцинтиллятора обеспечивает:

- 1. Эффективное развитие каскадов;
- 2. Высокое пространственное и энергетическое разрешение;
- 3. Чувствительность на уровне одного MIP;
- 4. Радиационную стойкость и механическую прочность.

Выбор комбинации из вольфрама и полистирола является результатом компромисса между необходимостью глубокого развития электромагнитного каскада (что требует плотного материала) и адронного каскада (что требует большого объёма низкоплотного сцинтиллятора). Такая структура также позволяет реализовать регистрацию нейтронной компоненты, используя эффект замедления нейтронов в полистироле и их последующего захвата, например, с помощью добавки ${}^{10}B$ в объем сцинтиллятора.

Таким образом, предложенная конструкция и материал ионизационного калориметра ОЛВЭ обеспечивают необходимую чувствительность, пространственное и энергетическое разрешение при сохранении допустимой массы и габаритов для размещения на борту космического аппарата тяжёлого класса.

2.1.5 О способе регистрации тепловых нейтронов

Для улучшения разделения адронной и электромагнитной компонент космических лучей, а также в качестве дополнительного канала регистрации энергии частиц, в калориметре ОЛВЭ предлагается регистрировать вторичные нейтроны, рождённые в адронных каскадах и замедленные в объёме калориметра до тепловых энергий. Для этого в сцинтиллятор предлагается ввести добавку — карбид бора.

У изотопа ${}^{10}B$ высокое сечение захвата тепловых нейтронов, в результате которого рождается альфа-частица с энергией $\simeq 2$ МэВ. Которую можно легко зарегистрировать.

2.2 Система измерения заряда (СИЗ)

Система представляет собой четырёхслойную матрицу кремниевых падовых детекторов, окружающую ИК со всех сторон. Она предназначена для точного определения заряда (Z) частиц по их ионизационным потерям. Особенности:

- 1. Разрешение по заряду $\Delta Z < 0, 2;$
- 2. Высокая пространственная точность;
- 3. Устойчивость к фоновому воздействию и воздействию обратного тока из калориметра.

Размер каждого детектирующего элемента (пада) составляет 1см². Используется технология, ранее опробованная в эксперименте НУКЛОН.

2.3 Выводы

Детектор ОЛВЭ представляет собой сочетание ионизационного калориметра и окружающей его системы измерения заряда: первичные частицы, входя в шестигранную призму из плотного вольфрам-медь-никелевого сплава, запускают адронно-электромагнитные каскады, глубина и профиль которых регистрируются трёхориентационными слоями полистирольных сцинтилляторов со встроенным оптоволоконным светосбором.

Шестиугольная геометрия и многоплоскостная ориентация стрипов (0°, 60° , 120°) обеспечивают обзор, близкий к 4π , и равномерное пространственное разрешение.

Четырёхслойная матрица кремниевых падов площадью 1 см² в СИЗ фиксирует ионизационные потери для точного определения заряда ($\Delta Z < 0,2$), при этом конструкция сохраняет допустимую массу (примерно 10 т) и высокую механическую и радиационную стойкость.

Глава 3. Моделирование в GEANT4

В данной главе будет рассмотрено моделирование в GEANT4, которое будет использоваться для расчёта взаимодействия частиц с веществом в спектрометре ОЛВЭ. Необходимо разобраться в утройстве GEANT4, а также в том как оптимальнее всего смоделировать поставленную задачу.

3.1 Обзор GEANT4

GEANT4 — это библиотека для моделирования прохождения частиц через вещество, разработанная CERN [17—19]. Она позволяет моделировать взаимодействия частиц с веществом, включая электромагнитные и сильные взаимодействия, а также ядерные реакции.

Среди всего ПО (GEANT3, FLUKA и т.д.), которое используется для моделирования взаимодействия частиц с веществом, GEANT4 является современным и универсальным инструментом, который полностью удовлетворяет поставленной задаче. Также предполагается, что GEANT4 будет использоваться для моделирования других задач в рамках ОЛВЭ.

3.2 Упрощённая модель спектрометра ОЛВЭ

3.2.1 Отличие модели от планируемого спектрометра ОЛВЭ

Выше описана конструкция и принцип работы спектрометра ОЛВЭ. В данной работе будет рассмотрена упрощённая модель, которая включает в себя только активный материал и поглотитель. Какие были допущены упрощения:

- 1. Не учитывается система измерения заряда (СИЗ);
- 2. Не учитываются конструктивные элементы, которые не влияют на взаимодействие частиц с активным материалом и поглотителем;
- 3. Не учитывается влияние магнитного поля Земли;
- 4. Не учитывается разделение между поглотителем и активным материалом (модель заполнена однородной смесью поглотителя и активного материала).

Данные отличия не влияют на основную задачу, которая заключается в оценке спектра и временной эволюции нейтронной компоненты, но при этом уменьшают время моделирования.

3.2.2 Получившаяся модель детектора

Вот как выглядит полученная модель в GEANT4, если подключить визуализацию(рис. 3.1).

Рис. 3.1: Вид получившейся модели детектора в GEANT4 под разными углами.

3.3 Моделирование поставленной задачи

3.3.1 Формализация задачи

Необходимо в качестве результата получить эволюцию количества тепловых нейтронов внутри детектора. Было решено, что наиболее важным и первоочередным является получение такой зависимости для протонов с энергией в 100 ГэВ и 1000 ГэВ.

Этот выбор вызван тем, что в солнечном ветре протоны значительно превосходят другие частицы по количеству, а значит именно они будут задавать фон нейтронов в детекторе. Энергия в 100 ГэВ была выбрана, так как это практически наименьшая энергия, при которой спектрометр будет фиксировать частицу, а 1000 ГэВ была выбрана для сравнения, так как интересно посмотреть как будут меняться спектры количество нейтронов в зависимости от энергии попадающей частицы.

Для отслеживания эволюции числа нейтронов были выбраны времена: 0, 100 ns, 250 ns, 750 ns, 1 μ s, 2 μ s, 4 μ s, 8 μ s, 10 μ s, 20 μ s, 35 μ s, 50 μ s, 100 μ s, 150 μ s, 200 μ s. Программа при своей работе в заданные моменты времени выписывает энергии всех нейтронов. Данная реализация позволит в последствии проанализировать как спектр в целом, так и только какую-то его часть. Для обработки полученных данных и их визуализации используется пакет ROOT [20–22], который позволяет удобно работать с графиками и данными.

3.3.2 Результаты моделирования

В результате были получены порядка 30 графиков. Большая часть — это распределение нейтронов по энергиям в разные моменты времени. Вот, например, распредления в самом начале (рис. 3.2).

Также чтобы было понятно, как меняется распредление по энергии в зависимости от времени, приведём распредление через 10 мкс (рис. 3.3).

Ну и наконец представим главный результат работы (рис. 3.4).

3.4 Выводы

По полученным результатам можно сделать следующие выводы:

- 1. В начале до 8 мкс наблюдается резкий рост числа тепловых нейтронов, что связано с замедлением первоначальных нейтронов в объёме калориметра;
- 2. После 8 мкс число нейтронов начинает падать, потому что часть из них захватывается веществом калориметра, а остальные просто вылетают из него;
- 3. Явно заметна разница в количестве нейтронов для разных энергий частиц.

Рис. 3.2: На графиках изображены начальные распределения энергий. Сверху — для протонов с энергией 100 ГэВ, снизу — для протонов с энергией 1000 ГэВ. Обе оси для наглядности представлены в логарифмическом масштабе

Рис. 3.3: На графиках изображены распределения энергий спустя 10 мкс после попадания частицы в детектор. Сверху — протоны с энергией 100 ГэВ, снизу — протоны с энергией 1000 ГэВ. Обе оси для наглядности представлены в логариф-мическом масштабе

Рис. 3.4: На графиках представленна зависисмость среднего числа тепловых нейтронов, создаваемых 1 протоном, в детекторе в зависимости от времени. Сверху — протона с энергией 100 ГэВ, снизу — протона с энергией 1000 ГэВ. Для того чтобы вознкающий пик был более наглядный для каждой энергии график в 2-х вариантах с линейной и логарифмической шкалой времени

Глава 4. Подведение итогов работы

Сформулированные во Введении задачи курсовой работы выполнены полностью:

Результаты по отдельности представлены в главах, можно обобщить и представить их тут:

- Определена актуальность проведения космического эксперимента ОЛВЭ, изучены физические принципы работы спектрометра и конструкционные особенности научной аппаратуры;
- 2. Создана упрощённую модель детектора в программе GEANT4;
- 3. Выполнен предварительный расчёт выхода нейтронов в модели и проанализированы их характеристики.

Таким образом, выполнена цель курсовой работы: результаты моделирования предварительно показали, что в спектрометре ОЛВЭ можно будет регистрировать нейтроны, возникающие от взаимодействия с космическими лучами, что может позволить создать дополнительный механизм для расчёта энергий.

Литература

- 1. *Птушкин В. С.* Теория галактических космических лучей // Успехи физических наук. 2001. Т. 171, № 9. С. 961—988.
- Зарядовый спектр ядер галактических космических лучей в оливинах из метеоритов / А. Б. Александров [и др.] // Успехи физических наук. — 2010. — Т. 180, № 8. — С. 850—853.
- Березинский В. С., Газизов А. З., Григорьева С. И. Особенности спектров галактических космических лучей // Успехи физических наук. — 2006. — Т. 176, № 2. — С. 180—203.
- Михайлов А. А. Широкие атмосферные ливни: экспериментальный обзор // Успехи физических наук. — 2005. — Сент. — Т. 175, № 9. — С. 987—1005. — DOI: 10.3367/UFNr.0175.200509b.0987.
- Хренов Б. А., Руденко И. А. Мюонная компонента широких атмосферных ливней и методы её регистрации // Известия РАН. Серия физическая. 2014. Дек. — Т. 78, № 12. — С. 1156—1162. — DOI: 10.1134/S1063776114120051.
- *Грушин В. Б., Мельников А. И.* Измерение массового состава первичных космических лучей методом широких атмосферных ливней // Журнал экспериментальной и теоретической физики. 2012. Апр. Т. 142, № 4. С. 456—466. DOI: 10.1134/S0021364012040023.
- Обсерватория лучей высоких энергий: текущий статус / Д. М. Подорожный [и др.] // Известия РАН. Серия физическая. — 2019. — Май. — Т. 83, № 5. — С. 696—698. — DOI: 10.1134/S0367676519050302.
- Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight / Y. S. Yoon [et al.] // The Astrophysical Journal. - 2011. - Feb. - Vol. 728. - P. 122. -DOI: 10.1088/0004-637X/728/2/122.
- PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra / O. Adriani [et al.] // Science. - 2011. - July. - Vol. 332, no. 6025. - P. 69-72. - DOI: 10.1126/science.1199172.

- Precision Measurement of the Proton Flux in Primary Cosmic Rays from 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station / M. Aguilar [et al.] // Physical Review Letters. - 2015. - Apr. - Vol. 114, no. 17. - P. 171103. - DOI: 10.1103/PhysRevLett.114.171103.
- 11. First Results of the NUCLEON Space Experiment: Spectra of Cosmic-Ray Nuclei from Carbon to Iron / N. V. Grebenyuk [et al.] // Astroparticle Physics. 2017. June. Vol. 90. P. 24-31. DOI: 10.1016/j.astropartphys.2017.02. 004.
- Direct Detection of a Break in the TeV Cosmic-Ray Spectrum of Electrons and Positrons with DAMPE / G. Ambrosi [et al.] // Nature. - 2017. - Dec. -Vol. 552. - P. 63-66. - DOI: 10.1038/nature24475.
- Elemental Cosmic-Ray Energy Spectra from 5 GeV/n to 500 GeV/n Measured by the SuperTIGER Instrument / M. E. Wiedenbeck [et al.] // The Astrophysical Journal. - 2013. - Dec. - Vol. 763. - P. 24. - DOI: 10.1088/0004-637X/763/1/24.
- 14. The High-Energy Cosmic-Radiation Detection (HERD) Facility On-Board China's Space Station / X. Cai [et al.] // Advances in Space Research. 2019. Mar. Vol. 61. P. 1031-1040. DOI: 10.1016/j.asr.2017.09.033.
- 15. Панов А. Д., Подорожный Д. М., Турундаевский А. Н. Прямые наблюдения космических лучей: современное состояние проблемы // Успехи физических наук. 2024. Т. 194, № 7. С. 681—710.
- 16. Разработка предложений для Обсерватории лучей высоких энергий (ОЛВЭ) для определения спектра и зарядового состава ядер космических лучей в области энергий 10¹³–10¹⁶ эВ / Д. М. Подорожный [и др.] // Отчёт НИИЯФ МГУ. – 2010. – Июль. – С. 1–104.
- 17. GEANT4 A Simulation Toolkit / S. Agostinelli [et al.] // Nuclear Instruments and Methods in Physics Research A. 2003. May. Vol. 506, no. 1/2. P. 250–303. DOI: 10.1016/S0168-9002(03)01368-8.
- Geant4 Developments and Applications / J. Allison [et al.] // IEEE Transactions on Nuclear Science. - 2006. - June. - Vol. 53, no. 3. - P. 270-278. - DOI: 10.1109/TNS.2006.873822.
- 19. Recent Developments in Geant4 / J. Allison [et al.] // Nuclear Instruments and Methods in Physics Research A. – 2016. – Oct. – Vol. 835, no. 1. – P. 82–97. – DOI: 10.1016/j.nima.2016.06.125.

- 20. Brun R., Rademakers F. ROOT An Object-Oriented Data Analysis Framework // Nuclear Instruments and Methods in Physics Research A. – 1997. – May. – Vol. 389, no. 1/2. – P. 81–86. – DOI: 10.1016/S0168-9002(97)00048-8.
- ROOT A C++ Framework for Petabyte Data Storage, Statistical Analysis and Visualization / I. Antcheva, M. Ballintijn, S. Bellenot, [et al.] // Computer Physics Communications. – 2009. – Dec. – Vol. 180, no. 12. – P. 2499–2512. – DOI: 10.1016/j.cpc.2009.06.026.
- 22. Recent Improvements and New Features in the ROOT Framework / I. Antcheva, F. Colecchia, P. Johnson, [et al.] // Computer Physics Communications. 2020. Mar. Vol. 248. P. 106947. DOI: 10.1016/j.cpc.2019.106947.