Упрощённая модель спектрометра Обсерватории Лучей Высоких Энергий(ОЛВЭ) для расчёта нейтронной компоненты

Злобин Савелий Сергеевич (409 группа) Научный руководитель: к. ф.-м. н. Подорожный Д. М.

МГУ им. М. В. Ломоносова Кафедра физики элементарных частиц

16 мая 2025

МГУ им. М. В. Ломоносова, Кафедра физики элементарных частиц

Галактические Космические Лучи(ГКЛ)

Диапазон энергий ГКЛ составляет от 10^6 до 10^{21} эВ. Их состав:

- Ядерная компонента: $\approx 90\%$ протоны, $\approx 9\%$ ядра гелия, $\approx 1\%$ тяжёлые ядра;
- Лептонная компонента: электроны ($\approx 1\%$ от ЯК), позитроны ($\approx 10\%$ от e^-);
- Антиадроны: < 1%

Энергетический спектр ГКЛ

Рис.: Энергетический спектр космических лучей

Эксперименты нового поколения по изучению КЛ: CREAM, PAMELA, AMS-02, НУКЛОН, DAMPE.

Эти эксперименты получили ряд статистически обеспеченных данных об особенностях в химическом составе и энергетических спектрах ГКЛ в области высоких энергий.

Важно отметить, что сделанные в последнее время открытия не вписываются в «стандартную теорию» и начата работа по поиску их астрофизического объяснения.

Конструкция спектрометра ОЛВЭ

- Ионизационный калориметр: слои из сплава W Cu Ni и сцинтилляторы на основе полистирола;
- Ожидаемая масса: ≈ 10 тонн;
- Форма: шестиугольная призма;
- Размеры: высота 1,47 м, диаметр 1,6 м;
- Геометрический фактор: $\Omega_{eff} \approx 12 \text{ м}^2 \cdot \text{ср}$ для протонов и $\Omega_{eff} \approx 18 \text{ м}^2 \cdot \text{ср}$ для ядер и e^{\pm} .

Рис.: Облик ОЛВЭ

Модель аппаратуры ОЛВЭ в САD

Рис.: Проектный облик аппаратуры ОЛВЭ

Задачи и цели моделирования

Задачи:

- Смоделировать конструкцию детектора ОЛВЭ;
- Обстрелять протонами 100 и 1000 ГэВ;
- Отследить нейтроны в интервале 0-200 мкс;

Цели:

- Изучить временную эволюцию тепловых нейтронов в установке;
- Найти зависимость числа тепловых нейтронов от энергии первичной частицы.

Упрощённая модель в GEANT4

• Допущения: без СИЗ, однородная смесь материалов той же плотности.

Рис.: Вид модели детектора в GEANT4 под разными углами

Спектры нейтронов по времени

Рис.: Распределения энергии нейтронов после обстрела протонами 1000 ГэВ в начальный момент времени и через 10 мкс в двойном логарифмическом масштабе

Временная эволюция тепловых нейтронов

Рис.: Среднее число тепловых нейтронов в установке в зависимости от времени для протонов 100 ГэВ

> Московский государственный университет имени М.В.Ломоносова

Временная эволюция тепловых нейтронов

Рис.: Среднее число тепловых нейтронов в установке в зависимости от времени для протонов 1000 ГэВ

Обсуждение результатов

- Найден пик тепловых нейтронов и время его появления;
- Зависимость величины пика от энергии протонов;
- Перспективы дальнейшей работы.

Перспективы и дальнейшие работы

- Учесть полную конструкцию и комплекс научной аппаратуры ОЛВЭ в модели;
- Смоделировать обстрел другими частицами (*He*, тяжёлые ядра, лептоны);
- Рассчитать фоновый уровень нейтронов.

Заключение

- Спасибо за внимание!
- Буду рад ответить на ваши вопросы.
- Контакты: zlobin.ss21@physics.msu.ru; Telegram: @zlobin_s_s

